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EXECUTIVE SUMMARY

An evaluation of seabed stability, liquefaction and development of fluid muds during dredging
and disposal was carried out in the Miramichi Inner Bay over a three week period during July
1993. The objective of the study was to determine if dredging and disposal activities cause
instabilities that lead to enhanced sediment erodibility and resuspension. Measurements of
sediment pore pressures, erosion thresholds, erosion rates, and settling rates were made at a
number of sites representing the natural seabed, the navigation channel, and an experimental
disposal site prior to and after disposal of spoils. The effect of ship passage on channel
stability and sediment resuspension was also evaluated during passage of two commercial
freighters.

Sediments in the Bay are characterized by high organic contents and minimal consolidation
and are very close to liquefaction. Measurements of sediment settling rates, however,
indicated that in most locations there is little potential for generation of fluid mud layers.
Erosion thresholds were lowest at the Channel sites and were typical of fluidized gels.

Erosion thresholds of dredge spoils were initially low, but quickly (within 60 hrs) increased to
exceed those of the original dredge materials. This strengthening, however, was restricted to
the surface 2 mm of sediment only. Immediately below this depth the strength of the disposed
material remained extremely low, and was even in a fluidized state. Monitoring of in siti pore
pressures at depths up to 50 cm before and after disposal of spoils indicated that spoils
deposition has no effect on the long term stability of underlying sediments.

Continuous monitoring of suspended sediment concentrations indicated little evidence of
either naturally occurring fluid mud layers or that dredging and disposal activities result in
chronically high suspended sediment concentrations outside of the immediate area of the
Channel where dredging is taking place. On two occasions high suspended sediment
concentrations (1000 mg-1), lasting for periods of up to six hours, were detected near the
Experimental disposal site. Tt was not clear if the source of these sediments was recently
deposited spoils or river inputs resulting from high tides and strong precipitation events.

Ship passage produced elevated suspended sediment concentrations (>2000 mg-1) at a site
approximately 100 m north of the Channel, but these lasted for only a short period (<15 mm).

A more significant impact of ship passage was the generation of short term cyclic excess pore

pressures by the wake which is a major factor leading to reduced stability of the Channel
margin. Ship passage effects, however, may be relatively minor compared to the potential
effects of sustained loading during extreme storm events.
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Seabed Stability, Liquefaction and the Development of
Fluid Mud During Dredging and Dumping at
Miramichi Inner Bay

. INTRODUCTION

During 1981-1983 a capital dredging programme was undertaken in the Miramichi Bay and
Estuary to deepen the navigable channel. Since that time, maintenance dredging has been
required to ensure adequate depths for ship passage. Most of the material dredged from the
Inner Bay during the capital project, and all of the spoils from maintenance dredging in the
Inner Bay have been deposited at Disposal Site B. Examination of sediment cores from this
site and nearby areas by Krank and Milligan (1989), together with other information, has
given rise to the perception that the disposal site is unstable, and that much of the dredged
material may have been remobilised, either as bedload or in suspension, to other parts of the
estuary.

Dredging of the Miramichi Ship Channel has been a controversial project since its mnitiation.
There is a widespread perception, particularly among the fishing community, that dredged
spoils have caused an increase in turbidity of the water in the estuary, and that this has
affected local fisheries, particularly for migratory species. Concern has also been expressed
regarding contamination of the sediments, although existing data indicate that levels of
contamination are not very high in the areas of the Inner Bay presently subject to maintenance
dredging (MacKnight 1992).

In response to these concerns, and at the request of Public Works and Government Services
Canada, the Acadia Centre for Estuarine Research of Acadia University and the Atlantic
Geoscience Centre of the Bedford Institute of Oceanography carried out a preliminary field
study during November 1991 to obtain measurements of sediment geotechnical properties and
sediment strength and erodibility near Disposal Site B and the Ship Channel.

Results of this preliminary study (Brylinsky et al. 1992) indicated that erodibility of sediments
on the spoils mound was less than at Control sites, and that the Channel sides exhibited the
lowest stabtlity. This study was conducted on spoils that had been deposited 1 or 2 years
earlier, indicating there was little likelihood of well-weathered material becoming mobilized
except under the most severe of conditions. It was not possible in that study to determine
whether extensive loss of sediment was occurring within a short period of its deposition on
the disposal site. In addition, direct measurements of pore pressure in control areas and
adjacent to the channel indicated that the liquefaction potential of naturally deposited
sediments appears to be high. This suggested that fluid muds might form under conditions of
higher stress associated with storms, dredging and disposal of spoils, or, in the region of the
Ship Channel, from the stresses exerted by passing ships. It was also evident that considerable
variability exists between the sites examined as representative of the natural seabed, in terms
of both sediment characteristics and critical erosion velocities, For these reasons, 1t was
deemed advisable to re-examine the properties of naturally and anthropogenically deposited
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sediments in the Bay, especially immediately after dredged spoils had been deposited on the
disposal site. Accordingty, in July 1993 a field study was carried out in the Miramichi Inner
Bay to address these concerns. The objectives of the study were to:

1.

o

tad

Obtain direct in situ measurements of the erodibility of sediments at up to 20 locations
in Miramichi Inner Bay using a benthic flume. Sites were selected to represent natural
seabed, seabed in the navigation channel and recently deposited dredge spoils on
Disposal Site B. ’

Determine the characteristic patterns of erosion of deposited dredge spoils, with
emphasis upon recently disposed material, and of the natural seabed.

Obtain long term measurements (i.¢., over several tides) of suspended sediment
concentrations in the vicinity of the Channel during dredging and at Disposal Site B
following recent deposition of dredge spoils.

Obtain direct in situ measurements of suspended sediment concentrations in water
near the Miramichi Ship Channel before, during and after passage of a commercial
vessel using the Channel.

Obtain long term measurements (i.e., over several tides) of pore pressures and
liquefaction potential of deposited sediments at sites in the Bay, with emphasis upon
areas adjacent to the Miramichi Ship Channel.

Conduct an extensive survey to determine if fluid mud layers exist within the Bay,
particularly in the region of recently disposed materials, and in association with
dredging activities and/or ship passage.

Obtain Van Veen grab and gravity core samples from 10-20 locations representing
natura) seabed, recent spoil mounds, and areas adjacent to the Miramichi Ship Channel
for determination of sediment geotechnical properties.

2. STUDY SITES and SAMPLING PROTOCOL

A total of 38 stations were occupied during the study. Table 2-1 lists the location and
samples collected for each station. Appendix A is a cruise log providing details of times and
activities for each station. The majority of activities were carried out in three general areas
(Fig. 1)*: (1) a Control site located north of Reach 22; (2) a Channel site within Reach 22; and
(3} an Experimental disposal site established within Disposal Site B. The Control site was
located immediately north of the Channel and served also as the location for deployments
carried out to monitor ship passage events. The Channel site was located in an area that was
being dredged during the time of the field study. The Experimental disposal site was located
in an area on the east margin of Disposal Site B that was unlikely to have had spoils deposited

*ocated in map pocket at rear of document
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during previous dredging and disposal activities. Table 2-2 summarizes the amounts of spoil
materials deposited at the Experimental disposal site, together with the times of deposition. A
total of 4181 cubic meters scow measure (CMSM) of spoils were deposited, all of which was
dredged from Area 22-28 of Reach 22. Figure 2-1 illustrates the distribution of spoils
deposited at the Experimental disposal site based on sounding survey carried out on 13
August 1993 by the Miramichi Surveyor.

Dredging was carried out by the Beaver Bell, a 36 m long by 12 m wide, 405 ton dredge fitted
with three spuds and equipped with a Model 1266 Koehring backhoe with a three cubic yard
capacity. Dredged material was transported to the disposal site by the Beaver 9 and Beaver
i0, both 34 m long and 10 m wide scows with a capacity of 400 cubtc yards. The scows were
towed by the Beaver Gamma (11.3 m long, 16.7 tons) and the Beaver Delta IT (10.9 m long,
11 tons).

The sampling procedure at each station consisted of obtaining Van Veen grab samples for
organic content and grain size analyses, gravity core samples for analysis of sediment index
properties, CTD profiles for salinity and temperature measurements, Excalibur deployments
for pore pressure analysis and liquefaction estimates, and Sea Carousel deployments for
determination of erosion thresholds, friction angles and sediment settling rates. The general
approach was to sample the Channel and Experimental sites prior to dredging/disposal and to
then resample the same locations after dredging/disposal, Prior to deploying Sea Carousel on
recently deposited dredge spoils at the Experimental disposal site, Van Veen grab samples
were collected and visually examined to ensure that the specific area selected for deployment
contained recently deposited dredge spoils.

Long term deployments of SOBS (Submersible Observatory for Benthic Stability) were made
at the Control site (10 days) and in an area east of the Experimental disposal site (5 days).
Two long term (six days each) deployments of Lancelot were made, one along the Channet
margin and one at the Control site. In addition, two current meters were deployed over the
entire field study (15 days), one at the Control site and one east of the Experimental disposal
site.

The effect of ship passage on sediment stability was monitored on two occasions. During the
first ship passage (15-16 July, M/V Mariner, 4950 gross tons, 112 m) Lancelot was deployed
on the slope of the Channel margin and SOBS was deployed at the Control site. During the
second ship passage (25-26 July, M/V Hubert Tanthier, 7964 gross tons, 133 m) Lancelot was
deployed at the Control site.




Table 2-2. Summary of spoils deposited at the Experimental disposal site.

Time Location Volume
Date (AST)* Lat Long (CMSM) Source
July 20 12:30 47°06.79"  65°10.16' 280 22-28
July 20 15:25 47° 06.76' 65° 1014 293 22-28
July 20 17:50 47°06.77  65°10.15 305 22-28
July 20 21:00 47° 0677  65°10.1% 280 22-28
July 20 23:30 47°06.81' 65°10.15' 280 22-28
July 21 02:30 47° 0675  65°10.10' 280 22-28
July 21 06:00 47°06.81'  65° 10.10' 280 22-28
July 21 07:55 47°06.74'  65°10.14 280 22-28
July 21 11:00 47°06.77"  65°10.15' 280 22-28
July 21 15:10 47°06.74"  65°10.14' 280 22-28
July 21 19:50 47°06.81'  65°10.14' 280 22-28
July 21 22:55 47°06.74'" 65°10.15 280 22-28
July 22 02:15 47°06.80" 65°10.14' 280 22-28
July 22 04:00 47° 0677  65°10.17 305 22-28
July 22 21:30 47° 0677 65° 1017 305 22-28
July 23 00:30 47°06. 77"  65°10.16' 293 22-28

*Atlantic Standard Time
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Figure 2-1. Distribution of spoils deposited on the Experimental disposal site.
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3. METHODS
3.1 Seabed Sampling and Analyses
3.1.1 Sampling Procedure

Surficial (O-15 cm) sediment bulk samples were collected using a Van Veen grab sampler.
Sediment core samples were collected using a 1 m long modified benthos gravity core sampler
fitted with 45 kg of lead. Both samplers were deployed and recovered using a wheelhouse
mounted line hauler. Twenty-two grab samples were collected. Immediately after collection,
grab samples were placed in a tray for description and subsampled for organic content
determination. Twenty-four core samples, ranging in length from 41 to 95 cm, were
collected. Core samples were capped with plastic endcaps, wax sealed and stored upright in a
refrigerated environment until laboratory analyses for water content, bulk density and grain
S1Z2€.

3.1.2 Multi-Sensor-Track Analysis

Multi-Sensor Track (MST) analysis was carried out on unsplit cores using the MST system
housed at the Atlantic Geoscience Centre of the Bedford Institute of Oceanography,
Dartmouth, Nova Scotia. This instrument logs sediment cores producing digital files of
several geophysical and geotechnical parameters. The apparatus consists of a conveyor
system on which the core is placed. The conveyor track is kevlar reinforced and forms a
continuous loop that is coupled to a gearbox and a stepper motor, enabling both forward and
reverse motion past the sensor head. The gearbox reduction ratio of 1:120 produces enough
torque to carry the core at speeds of up to 2.5 m min-1.

The measurement sensors on the system consist of a magnetic susceptibility sensor, a pair of
compressional wave transducers, a gamma ray source (for measurement of bulk density), and
a pair of displacement transducers. Magnetic susceptibility is useful in identifying gaps within
the core as well as tracing sediment provenance. Core diameter is measured by a pair of
displacement transducers that are mounted on the faces of the compressional wave
transducers. The track and sensor array is coupled to a personal computer via an RS232
interface.

Magnetic susceptibility is sensed through the whole core using a Bartington loop. The fixed
loop diameter favors large diameter cores, so the small diameter of the Miramichi Bay cores
made it necessary to run the instrument at longer time intervals to gain the required magnetic
detail.

3.1.3 Core Splitting and Analyses of Physical Properties

Core samples were split longitudinally, photographed and described. Subsamples were then
taken for determination of water content, bulk density, organic content, undrained shear
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strength and grain size analyses. The presence of disposed material was noted on the
description log along with colour, lithology and sedimentary structures.

Water content was determined according to the following formula:

where M, is wet mass minus dry mass, M 1s dry mass, My is wet mass and 7 is saltnity. Dry
weight was determined from samples that had been oven dried at 110 °C for 24 hrs. Salinity
was measured using an optical refractometer.

A constant volume sampler (9.723 cm?) was used to obtain samples of known volume for
determination of bulk density which was determined according to the following equation:

ps=My Ve
where Vg is wet volume.

Undrained shear strength .S}, (peak strength) was recorded using a miniature shear vane
interfaced to a personal computer. Grain size samples were taken and analyzed for the full
grain size distribution. After subsampling, the working half of each core was wrapped with
cellophane, placed in a plastic storage case, along with the archived section, and returned to
cold storage.

3.1.4 Grain Size Analyses

Grain size analyses were performed on 21 Van Veen subsamples and 22 core subsamples,
taken at different depth increments within three specific cores. Detailed analyses of grain size,
organic content and bulk density variation with depth were carried out on three core samples,
chosen on the basis of location and because they were the longest cores recovered at each
particular site. These included cores taken at Station 13 (Channel; 7 subsamples), Station 25
(Control; 8 subsamples) and Station 28 (Post-disposal Experimental site; 7 subsamples).

Complete grain size analyses involved a number of laboratory pre-treatment procedures for
sieve, settling tube and sedigraph analyses. Samples rich in organics were pre-treated to
remove the organic matter in order to allow the trapped fine sediment to be processed. Raw
samples of circa 100 g wet weight were pre-weighed and oven dried at 50-60 °C for
approximately six hrs and then reweighed for determination of dry weight. Samples were then
placed in 1 liter glass beakers to which 2-3 drops of 25 percent hydrogen peroxide were
added. Heat and fumes were controlled, when excessive, with spray bottles containing
distifled water. Gradually, additional hydrogen peroxide was added while the sample was
stirred. Once the reaction began to subside, greater quantities of the peroxide (up to 500 ml
for a 100 g sample) were added to ensure that organic removal was complete. The samples
were placed in a warm water bath for 3-4 hrs to complete the reaction. Finally, the water bath
was set to boil for a further 3-4 Tws. The samples were then placed in an ultrasonic bath for
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approximately 5 min and stirred to assist in desegregating the mud from the coarser fraction.
The samples were then poured through a 0.053 mm wet sieve and separated into mud and
coarser fractions. Excess water in the basin was decanted and the mud residue added to the
initial separated mud fractions. The coarse fractions contained in the sieve were transferred to
pre-weighed filters and washed to remove any hydrogen-peroxide residue. The filters were
then placed on pre-weighed dishes, oven dried at 50-60 °C for approximately 48 hrs,
reweighed, separated from the filter and further split into sand and gravel fractions using a
1.00 mm dry sieve. The gravel portion was weighed and any subsamples exceeding'8 percent
of total sample weight were subjected to further sieving. The sand fractions were microsplit
into 1 g subsamples to give representative samples for the settling tube.

The mud fractions from the wash were transferred to 750 ml centrifuge bottles and spun at
3000 rpm for 90 min. The bottles were then decanted and the remaining mud transferred to
250 ml centrifuge bottles which were spun at 3000 rpm for an additional 60 min. The
consecutive centrifuge runs helped to clean the mud of hydrogen peroxide residue. These
bottles were also decanted and the mud transferred to pre-weighed beakers and dried at 50-60
°C for 3-5 days. The dry mud samples were then re-weighed, placed in distilled water and
riffle-split to between 3.5 g and 5.5 g. The final mud splits were spun at 3000 rpm for 60 min,
decanted to remove the distilled water which was then replaced with an electrolyte solution.
The mud splits were then placed on a mechanical shaker for 2-3 hrs prior to the sedigraph
analyses.

A Micromeritics Instrument Corporation Model 5000D sedigraph was used for grain size
analysis of the mud fraction. This instrument uses an x-ray measurement technique. The mud
sample is pumped through a sample cell and the transmitted radiation is detected by a
scintillation counter, amplified, passed through a noise discriminator and clipped to a constant
voltage. A dedicated computer logs the signal from the instrument.

The settling column analysis, used for grain size analysis of the coarser particle fraction, is
based on the principle that a sample's grain size distribution can be obtained from
measurement of the mass-velocity distribution of sand grains, settling through an otherwise
turbid free liquid. It is assumed that the grains settle out individually and are not hindered by
other settling particles, involved in convective plumes of high concentration, or retarded by
upward flow of displaced fluid. The settling column 1s comprised of a pyrex pipe
approximately 2 m high and 15 cm in diameter. A balance (interfaced with a computer) at the
top of the column is connected through a thin cable to a collecting plate at the bottom of the
pipe. An introduction system below the balance is connected to a computer via a
microswitch. Once the sample is spread over the introduction system and released, the
sediment particles begin to fall through the water column, eventually arriving at the collection
pan below. The accumulating weight of the particles on the pan is registered by the balance
and recorded by the computer.

Merging software accumulated the data from the settling tube computer and sedigraph
computer to produce the proper convergence of grain size from the mud to sand spectrum.
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Grain size percentages for total sample weight had previously been computed through the
various fraction weights added throughout the lab procedures.

3.2 Sea Carousel

Sea Carousel, named afier the carousels of Postma (1967) and Hydraulic Research Limited
(Burt 1984), is a benthic annular flume designed for field use in intertidal and subtidal settings.
The carousel is 1.0 m in radius with an annulus 0.15 m wide and 0.30 m high (Fig. 3.2-1). It
weighs approximately 150 kg in air and 40 kg in water and is made entirely of aluminum.
Flow in the annulus is induced by rotating a movable lid that is driven by a 0.35 hp DC motor
powered from the surface. Eight small paddles, spaced equidistantly beneath the lid, induce a
flow of water in the annulus. The width of the annulus (D) was made 0.15 m to give a relative
roughness (e/D) + 0.004 (where the wall roughness, e = + 0.0006 m; after Shames (1962)).
The water depth in the annulus was minimized to 0.25 m to ensure conditions for Nikuradse's
"rough-pipe zone of flow" wherein changes in wall friction factor with changes in Reynolds
number are at a minimum (Shames 1962).

A schematic diagram of the Sea Carousel configuration is shown in Figure 3.2-2. Tt is
equipped with three optical backscatter sensors (OBS's; Downing 1983). Two of these are
located non-intrusively on the inner wall of the annulus at heights of 0.03 and 0.18 m above
the skirt (the skirt is a horizontal flange situated around the outer wail of the annulus 0.04 m
above the base; it was designed to standardize penetration of the flume into the seabed; see
Figure 3.2-2). The third OBS detects ambient particle concentration outside the annulus, or it
may be used to detect internal sediment concentration at a height between the other two. The
OBS sensors give linear responses to particle concentration (of a constant size) for both mud
and sand over a concentration range of 0.1 to 50 g I'! (Downing and Beach 1989). They are
unaffected by flows below 1.5 m sec! and are stable through time. A sampling port is
situated in the outer wall of the annulus at a height of 0.2 m above the skirt through which
water samples can be drawn to calibrate the three sensors under well mixed conditions.

Flow within the carousel was determined from a relationship between azimuthal speed and lid
rotation presented in Amos et al. (1992). Mean tangential lid rotational speed (U;) is detected
through a shaft end-coder resting on the lid. Controller boards for each sensor and the
necessary power (12 VDC) are derived from an underwater pod located above the annulus.
QOutput voltages from all sensors are digitized and transformed to scientific units on a
Campbell Scientific CR10 data logger and stored on a Campbell Scientific SM192 storage
module (storage capacity of 96,000 data values), also located in the underwater pod. The
data logger is interrogated and programmed from the surface using a microcomputer linked to
the data logger through an RS232 interface. Maximum sampling rate of ali channels is
approximately 2 Hz, whereas Uy, and Uy, may be logged at rates up to 10.66 Hz. All channels
may be monitored and displayeci, on the surface computer allowing the operator to control the
experiment interactively. Bed shear stress is varied in time by varying the power supplied to
the underwater motor up to 350 watts via a surface power supply. The data stored from each
deployment may be downloaded remotely through the RS232 cable at the end of each
experiment and the storage module reinitialized.
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Figure 3.2-2. Schematic diagram of the configuration of the Sea Carousel.
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A window is located in the inner flume wall for purposes of observing and recording the
mechanics of bed failure. A perspex wedge at the base of the window sections the sediment
upon deployment. Thus the upper 20 mm of sediment and the lower 10 cm of the water
column can be viewed in section. Visual observations are made using a Sony Handycam 8
mm video recorder model CCD-V11 held in an Amphibico Amphibian V11 underwater
housing. Light is provided by two 100 watt underwater lights powered from the surface. The
housing has a lens that corrects for underwater geometric distortions and so is suitable for
accurate image scaling. The camera lens is located approximately 0.2 m from the window.
Horizontal and vertical scale lines are present on the window and situated within the field of
view. The camera images 100 frames sec™!. A co-axial cable connects the camera to a
surface monitor for real-time detection. Video records are stored on a standard VHS video
cassette recorder, also at the surface. Sequential video images are digitized for particle
trajectories at varying heights above the bed. From these, velocity profiles are constructed.
From such profiles, thicknesses of the logarithmic part of the benthic boundary layer are
determined and friction velocities computed. These latter values were then compared with
laboratory measures.

Dispersion of suspended sediment out of the rotating annulus was observed on the video to
take place during submerged deployments of Sea Carousel. Dispersion results from
exchanges of water mass between the annulus (at concentration S1) and the open marine
environment {at concentration S,) where S; = S,. The rate of diffusion of mass (M) may be
defined per unit cross-section area as:

M/t = - § 8S/0x ey

where 8 is the coefficient of diffusivity (L2T-1) and x is a typical horizontal length scale,
which in our case is unknown. Similarly, the change in mass in Sea Carousel may be defined
as;

oM/ct=-06 0S/0x Ae/V (2)

where A is the area over which diffusion takes place (0.012 m?), V is the volume of Sea
Carousel (0.218 m3), and « is an efficiency term dependent on the azimuthal velocity (€ o
Uy). Measurements of ¢M/dt at different constant azimuthal velocities yield a concentration

half-life (S14) of 2400 sec, setting & = Uy and 85/8x to (S] - Sp), the quotient (- 5A/0x) is
derived:

BM=-33x10-3(S1 - S)Uy &t (3)
The loss of mass through dispersion, calculated using equation 3, is added to measured

annulus mass (SV) to derive a measure of the total mass, where V is the annulus volume
(0.218 m3).
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3.3 Submersible Observatory of Benthic Stability (SOBS)

The Submersible Observatory of Benthic Stability (SOBS) is a benthic tripod that is equipped
with six Optical Backscatter Sensors (OBS); Downing and Beach (1989), a pressure
transducer and a down-looking Hi8 SONY video camera (Fig. 3.3-1). The lower OBS sensor
is oriented in a down-looking mode at a height of 0.13 m above the base. The remaining five
sensors are Jocated from 0.16 to 1.80 m above the base in a logarithmic progression.

The SONY Hi8 video camera was housed in an Amphibico underwater housing. [t was
installed 0.43 m above the tripod base and was oriented approximately 459 from the
horizontal to give a field of view of circa 1 m2. The seabed was illuminated by two
Amphibico 75 watt lights mounted normal to the field of view of the camera.

Two AccuStar clinometers, installed in the pressure case, give information on the attitude of
the tripod from horizontal along two orthogonal axes. These sensors are sensitive to changes
of 0.0010, A Data Instruments pressure sensor records hydrostatic pressure to 200 psi (132
m). It is sensitive to 1 psi (0.7 m) changes, '

The system is powered by two 12-volt Sonnichsen batteries capable of delivering 126 amp-
hours of power. System control and data logging are controlled by a TattleTale 6 (Onset
Data Corporation) data logger attached to a 20 Mbyte hard-drive. Data from each of the
OBS sensors and the pressure sensor are logged at a rate of 1 Hz and stored on the hard-
drive. The video camera was operated to record for 5 sec every 2 min.

The following information is logged on the header of the data file: start time, end time,
disposal time, version, scans per min, battery voltage, burst rate, burst length, camera interval,
camera duration, X inclinometer, and Y inclinometer.

The calibration of the OBS sensors was undertaken using reduced, blackened sediments
collected in the navigation channel. This was done as we were largely concerned with this
material in a dredged and disposed form. The calibration curve for each sensor 1s shown in
Figure 3.3-2. At low suspended sediment concentrations (< 1000 mg'l) the sensors showed a
linear response. The equations defining these linear responses are given in Table 3.3-1.

Above 1000 mg-1, the sensors showed virtually no response to changing concentrations
suggesting that the sensors were saturated. This response is presumed to be due to the colour
of the bottom sediment which is black due to the highly-reduced, organic-rich nature of the
matertal. As the sensors rely on the reflection of deep-red light (660 nannometres
wavelength) to detect material is suspension, we presume that the light is fully absorbed by the
sediment rather than reflected.

3.4 Shear Strength Analysis
Seabed instability is governed by soil mechamcs principles. The stability of a sediment mass

can best be described in engineering terms by means of the concept of "effective stress”,
whereby shear strength is decomposed into two independent components, the effective stress
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Table 3.3-1. Calibration equations for Optical Backscatter Sensors on SOBS.

OBS SENSOR HEIGHT (m) CALIBRATION
1 0.13 -119 + 0.642 (OBS1)
2 0.16 -105 + 0.564 (OBS2)
3 0.27 -125 + 0.609 (OBS3)
4 0.41 -85 +0.523 (OBS4)
5 0.95 -325 +0.250 (OBS5)
6 1.80 -158 + 0.863 (OBS6)
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shear strength parameters. The shear strength and consolidation of marine sediments
responds to changes in effective stress, while the movement of porewater is controlled by
hydraulic gradients within the bed, as well as sediment permeability.

Before one can develop an understanding of the triggering mechanisms involved in
tiquefaction failure of the seabed, it is necessary to determine the manner in which shear
strength is mobilized within the bed, the nature of resulting deformations and the role of
excess porewater pressure. To provide a basis for developing an understanding of the reasons
why a loose sediment deposit can lose strength during shear, compared to a dense deposit
which stiffens and sustains additional load without appreciable deformations, some basic soil
mechanics theory is given below.

The strength of a sediment mass 7is expressed in terms of effective stress oy, ', which i1s given
simply as the sum of gravitational forces minus buoyant forces according to the Mohr-
Coulomb failure criterion (Terzaghi and Peck 1967) wherein,

T=c'+ oy’ tan ¢' |
where tan ¢'is the slope of the failure envelope (Fig. 3.4-1).

The failure envelope represents a bounding condition within which all effective stress states
must exist. Any stress state approaching the failure envelope is indicative of internal shearing
of the sediment, which occurs associated with changes in excess pore water pressure {positive
during contraction and negative during dilation). The shear strength at zero effective stress 1s
referred to as the effective cohesion intercept ¢', which is roughly equivalent to the cnitical
shear stress for erosion. Cohesion can only exist in fine-grained sediments (arising through
attractive forces between clay particles), or in organically-bonded sediments and is non-
existent in clean sands. Referring to Figure 3.4-1, point @ represents the in sifu stress state of
an element at a distance z below the seabed. Effective vertical stress is governed by the
thickness of overlying sediment, as well as the bulk density pg of the sediment. However, by
the principle of effective stress, any excess porewater pressure dU reduces the effective
vertical stress according to,

Ovo' = (Ps - Psw g 2 - dU
where pg,, 1s the density of seawater and g is the constant of gravitational acceleration.

The difficulty of measuring excess pore pressures has led in many instances to a general
assumption of fully drained, hydrostatic conditions. Subsequent analysis of the state of
consolidation has suggested that excess pore pressures have been overlooked (Silva and
Jordan 1984; Richards 1984). This problem was overcome with the development of new
techniques for in situ hydrogeologic measurement (Christian et al. 1993} and is especially
important in any study that seeks to identify the causal trigger for liquefaction events.
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The effective stress at any depth can be estimated only by measuring the sediment bulk density
from high-quality core samples. The effect of residual hydraulic gradients can be included in
the calculation of effective stress by measuring the porewater pressure in situ,

As the sediment experiences shear, it begins to deform, and its stiffness changes. If the initial
state was loose, then shearing with no drainage leads to structural collapse, resulting in the
development of excess pore pressure. Progressive failure is rapid and a point on the failure
envelope is reached (point ), after which unlimited deformations can occur under sustained
shear stress. If the initial state of the sediment is dense, then the sediment structure attempts
to expand (dilation). Again, if drainage is prevented, then no volume change occurs and the
pore pressure becomes negative, increasing the effective stress. The sediment becomes
stronger, as indicated by the stress path that rises up the fatlure envelope, ending at point 5",
After large deformations, both stress paths end up at point ¢ on the failure envelope. If the
shear strength at c is less than it was initially at a, then the failed mass will continue to move in
response to the driving stress, until it diminishes to the same level. Shown along with the
dashed idealized stress paths ab and ab’ are idealized stress paths followed during cyclic shear
loading, such as might occur during storm events.

Referring again to the Mohr-Coulomb failure criterion, the peak shear strength is maximized
in dense angular cohesionless materials, but is substantially less following colfapse if
conditions are loose before shear. Due to the high pore pressures generated during shear-
induced collapse, sediments existing on a slope may subsequently undergo catastrophic flow-
type downslope movements. Such mobile sediments may exist as a viscous fluid following
failure and continue to deform under external forces,

Excess porewater pressure causes the effective stress state within the seabed to shift to the left
toward the failure envelope. Any process which initiates and sustains excess porewater
pressure can lead to failure. As sediment is sheared in this manner, 1t begins to yield, 1s
progressively weakened by the rupture of interparticle bonds and begins to deform. If the
sediment 1s initially loose, then a collapse of the structural arrangement of particles occurs,
giving rise to further increase in pore pressure, At the point of failure, the effective stress 1s
essentially zero, and the sediment suffers a complete loss of shearing resistance (Clukey et al.
1985). The subsequent type of deformation ranges from rapid flowslide (for very loose
cohesionless materials), to limited spreading-type movements {(in marginally collapsible
sediments), to no significant movement (in dense or dilatant sediments). For a period of time
after initial failure, the weakened sediment mass i1s more susceptible to erosion by currents and
waves.

This is illustrated in schematic form in Figure 3.4-2, showing how waves can lead to internal
shearing, which destabilizes the sediment structure, resulting in a large buildup in excess pore
pressure. Once the effective stress state reaches zero, liquefaction is said to have occurred.
Wave energy attenuates exponentially with water depth and the stability of a sediment deposit
is governed by the amount of energy imparted by the wave, the looseness and potential for
collapse of the seabed, as well as its permeability, or ability to allow the movement of
porewater. Thus, the wave period becomes important, as silty sediments are able to dissipate
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farge amplitude standing waves (1.e., tides), given sufficient time, without a reduction in
stability. Small-amplitude, high frequency waves, however, can lead to excess pore pressure
buildup and, ultimately, liquefaction failure.

Pore pressure measurements were carried using Lancelot (long term) and Excalibur (short
term). Appendix F contains the operation log for both instruments.

3.4.1 Lancelot

Lancelot is an instrument used to measure the in situ porewater pressure regime beneath the
seabed, providing data required in engineering stability calculations. Excess porewater
pressures may develop in certain loading situations and are of concern, as they directly reduce
sediment shear strength (Christian et al. 1993). Previous investigations in Miramichi Inner
Bay detailing use of the Lancelot system are reported in Brylinsky et al. {1992) and Christian
and Heffler (1993).

Lancelot is configured to push a slender probe with a pressure port to a predetermined
distance beneath the seabed, and to make measurements over an extended time frame, at
various data sampling rates. The instrument (Fig. 3.4.1-1) consists of a wide baseplate, a
rigidly-mounted pressure case and a slender probe (outside dia of 1.6 cm). The probe
contains an oil-filled tube that connects a porous filter stone mounted behind the tip to a
differential pressure transducer (Validyne Model DP9) inside the electronics housing. This
transducer records pore differential fluid pressure changes within the seabed to an accuracy of
4+ 1.4 mm of head. The back side of the transducer is ported to the water column, giving a
continuous pressure reference. There is also an absolute pressure transducer (Data
Instruments Model AB), located at the top of the instrument pressure case, which gives a
continuous record of water depth to an accuracy of + 100 mm. Sensors for recording pitch
and roll (vertical tilts) are located inside the pressure case, along with a vertical accelerometer,
- which records orientation and dynamic motion of the instrument during the deployment

© period. Data are stored within a TattleTale 6 (Onset Corporation) datalogger, which was

- programmed to sample all sensors at rates ranging from 55 to 100 scans per min. The

+ tnstrument 1s capable of autonomous operation for periods lasting up to 20 days at a rate of 55
scans per min. All data are written to an internal 20 Mbyte hard drive, and is downloaded
after recovery for playback and analysis. The data are stored in sequential files that are time-
_referenced to an onboard clock. A lithium battery prevents data loss in the event of a power
failure.

A diagram of Lancelot in the deployed configuration is given in Figure 3.4.1-2, wherein the
probe tip has been driven into the seabed by the weight of the instrument, and is in the process
of collecting data. An idealized penetration record 1s shown in Figure 3.4.1-3, illustrating the
dilatant and contractant pore pressure response that might be encountered. There are five
pieces of information that can be obtained from the data record. The initial response in the
water column is shown at 1, where wire motion and ship heave resuit in a coupled sensor
sponse. During each deployment and recovery, 5 to 10 min are allowed for this stage,
providing a temperature-corrected baseline calibration for the differential pressure transducer.
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Figure 3.4.1-2. Diagram of Lancelot in the deployed configuration.
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The maximum penetration pore pressure denoted by 2 can provide an accurate estimate of
undrained shear strength in clayey sediments. The consolidation or dissipation response is
shown at 3, again for the case of soft fine-grained sediment. Wave or tidal cycling can induce
a cyclic excess porewater pressure response, as indicated at 4, which, if large, can lead to
liquefaction failure. The equilibrium or residual excess porewater pressure, given by 5
provides data for an evaluation of effective stress, when combined with a high-quality bulk
density sample from the test site, which is used in an evaluation of liquefaction. Only stages 1,
4 and 5 can be obtained in Miramichi sediments, due to their high silt content, which can lead
to partially drained conditions around the probe during penetration.

3.4.2 Excalibur

Excalibur is a newer version of the Lancelot system developed to have the additional
capability of obtaining pressurized porewater/gas samples after completion of the pore
pressure measurement test stage (Christian 1993). The salinity of the porewater sample 1s
measured using a handheld refractometer. The volume of free gas existing within the sample
is computed by subtracting the volume of porewater recovered from the total volume of the
sample cylinder.

The physical configuration of Excalibur is very similar to that of Lancelot. The length of the
probe is 55 cm. The tube inside the probe is filled with distilled water before each
deployment, in a similar manner as with Lancelot. The volume of water initially within the
hydraulic circuit is about 0.5 cc¢, which represents a 1.1 percent dilution of the porewater
sample. The quantity of in situ porefluid recovered is obtained by measuring the salinity of
the recovered sample and that of the water column.

The differential transducer is a Validyne Model DP300, and has a similar accuracy to that in
Lancelot. Identical transducers as in Lancelot are used to record pressures and instrument
orientation. No accelerometer exists in Excalibur, however. The absolute gauge was located
inline with the control valve and the porous filter stone on the tip instead of on the top of the
pressure case, in order to record pressure changes within the 40 cc sample cylinder. The valve
position is controlled through pre-programming by computer to open and close the line to the
sample cylinder at preset times. For deployments where the instrument was left on site longer
than the available memory would allow, a facility for storing the most recent data was

enabled.

3.5 Current Meters

Aanderaa RCM-7 current meters were deployed continuously at two locations (Stations 2 and
5) at a depth of circa 1 m above the seabed. Station 2 was located in the control area and
Station 5 was located circa 500 m east of the Experimental disposal site. Current velocity (m
sec™1), current direction (degrees true), pressure (dbars), temperature (°C), conductivity (i
mhos em-1)and salinity (ppt) were recorded at 15 min intervals,
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3.6 CTD

CTD deployments were carried out using an Applied Microsystems EMP-2000 CTD fitted
with salinity, temperature and OBS turbidity sensors.

3.8 Positiening

Geographic positioning was carried out using a ship mounted Koden Model KGP-97 GPS
navigator. All station locations were recorded in latitude and longitude. The corresponding
UTM coordinates (converted by Public Works and Government Services Canada personnel
using GSRUG developed by Energy, Mines and Resources) are presented in Appendix B.

4. RESULTS
4.1 Sediment Properties

The results of analyses for sediment properties of Van Veen grab and gravity core samples are
presented in Appendix C. Colour photographs of gravity core samples are contained in
Appendix D.

Sediments from all sites were similar and were characterized by high organic content {8-20
percent), high water content (generally >100 percent) and low bulk densities. Detailed
analysis of representative cores from each study site revealed a decrease in organic content
with depth (Fig. 4.1-1) and a strong correlation between organic content and water content
(Fig. 4.1-2). Grain size analyses on these same cores indicated clay, silt and sand contents of
circa 50, 40 and 10 percent, respectively, with little variation with depth (Fig. 4.1-3).

4.2 Sea Carousel Results
4,2.1 Summary

Good results were obtained from all 20 stations undertaken in this survey. A hst of these
stations 18 shown in Table 4.2.1-1 and results are summarized in Table 4.2.1-2. Results were
obtained from water depths of 4.9 m to 8.5 m. Video results (VHS) were obtained at 17
stations, while high resolution Sony Hi8 records were obtained from 19 stations. Four
stations were occupied within the Experimental disposal site prior to disposal (MIR 1, MIR2,
MIR3, and MIR4); two stations were taken in the Channel within Reach 22 (MIR4 and
MIRS); three stations were occupied north of the Channel at a natural Control site (MIR 12,
MIR 13, and MIR14); and eleven stations were occupied on newly disposed material within
the Experimental disposal site (MIR7, MIRS8, MIR9, MIR10, MIR11, MIR15, MIR16,
MIR17, MIR18, MIR19, and MIR20).

Water depths at the Control site ranged from 5.8 to 6.2 m. The water temperature was
between 15.0 and 15.1 °C and the salinity was circa 22 ppt. Water depth at the two Channel
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Figure 4.1-1. Variation in sediment organic content with depth for core samples taken in the
Channel (GC-13), Control site (GC-25) and the post-disposal Experimental site (GC-28).
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Table 4.2.1-1. Summary of Sea Carousel deployments (station numbers in
parentheses; Video, 1 - Sony Hi8, 2 - VHS (low resolution))}.

STATION* LATITUDE LONGITUDE DEPTH (m) TIME (min) SUB-SAMPLE VIDEO

MIR1{6)-PD 47°06.97' 65° 10,33 52 83 12 1

MIR2(T)-PD  47° 07.05' 65° 10.21 53 75 12 i

MIR3(8)-PD  47° 06.88' 65°10.33' 5.8 34 12 12
MIR4(9)-PD 47° 06.87" 65° 10.39' 52 91 11 1,2
MIR5(13)-CH 47° 07.79' 65° 09.21" 85 102 11 12
MIR6(12)-CH 47° 07.79' 65°09.21 85 106 Il 1,2
MIR7(8)-D 47° 06.96' 65° 09.90" 5.2 86 11 1.2
MIRS(20)-D 47° 06.86" 65° 10,29' 52 39 7 2

MIRS(21)-D 47° 06,86 65° 10.26" 4.9 80 11 1,2
MIR10(22)-D  47° 06.90' 65° 10.29' 5.0 83 13 1,2
MIR11(23)-D 47° 06.87 65° 10.23" 5.0 67 12 1,2
MIR12(25)-CO 47° 08.01' 65° 09.46' 6.4 88 12 1,2
MIR13(26)-CO 47° 08.02' 65° 09.49' 6.1 74 13 £2
MIR14(27)-CO 47° 08.01' 65° 09 .46' 338 78 12 1,2
MIR15(28)-D 47° 07.02' 65°10.12' 52 76 13 1,2
MIR16(29)-D  47° 07.03' 65° 10.12' 5.5 82 12 1,2
MIRI7(30)-D  47° 07.04' 65° 10.10" 5.2 80 12 1.2
MIR18(32)-D 477 06.85' 65° 10.31' 5.5 D 10 1.2
MIR19(33)-D 47° 06.86' 65° 10.25' 5.5 71 12 1,2
MIR20(34)-D  47° 06.86' 65° 10.31' 5.2 80 13 1.2

*PD - pre-disposal Experimental site; CH - Channel site; D -post-disposal Experimental site; CO -
Control site.




Table 4.2.1-2. Summary of the results of Sea Carousel measurements from the
twenty stations occupied during the study. ( Stations fail into four settings: pre-disposal
experimental site (PD), the navigation channel (CH), control site (CO), and the post-disposal material in
the experimental disposal site (D). The stations fall into five broad groups based on the shear stress
profiles and friction angles. These are: (1) stable beds (positive friction angles where ¢ > 10°); (2),
unstable beds (negative friction angles where ¢ < -10°); (3) neutral beds (where 10° > ¢ > -10°, and where
> 0); (4) fluidized beds (where 10° > ¢ > -10°, and where © = 0); and (5} a surface phenomenon of bed
strengthening interpreted as sediment biostabilizing due to microorganisms.)

STATION COHESION FRICTION EROSION BED
(Pa) ANGLE TYPE STATE
MIRI (6) 1.5 -29 IA BIOSTABILIZED
PD - 19 1B UNSTABLE
-3 1B UNSTABLE
MIR2(7) 1.5 =75 1B BIOSTABILIZED
PD 2 1B STABLE
MIR3(8}) 1.4 -16 B BIOSTABILIZED
PD 6 B STABLE
MIR4(9) 0.7 -5 IB UNSTABLE
PD 16 B STABLE
MIR3(13) 1.0 -45 1A UNSTABLE
CH ' - 10 II UNSTABLE
MIR6(12) 0.8 -13 IB BIOSTABILIZED
CH 0 IB UNSTABLE
4 1B STAELE
MIR7(8) 0.7 -8 1B UNSTABLE
D 10 1B STABLE
MIRE(20) 0.3 -34 I BIOSTABILIZED
D - 10 II UNSTABLE
0 II FLUIDIZED BED
MIR9(21} 0.6 70 1A BIOSTABILIZED
D - 13 B UNSTABLE
11 IB STAELE
MIR 1022} 0.5 78 iB STABLE
D 29 B STABLE

4 iB NEUTRAL
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Table 4.2.1-2. (Continued)

STATION COHESION FRICTION EROSION BED
(Pa) ANGLE TYPE STATE
MIR11(23) 1.0 29 IB BIOSTABILIZED
D -4 B UNSTABLE
1 11 FLUIDIZED BED
MIR12(25) 1.3 2] IB UNSTABLE
cO 3 IB NEUTRAL
16 IB STABLE
MIR 13 (26) 14 18 IB UNSTABLE
Co 0 B NEUTRAL
18 IB STABLE
MIR 14(27) 1.4 22 B UNSTABLE
co -6 B NEUTRAL
12 IB STABLE
MIR15(28) 0.8 -8 IB UNSTABLE
D 17 B/ STABLE
63 I UNSTABLE
MIR 16(29) 0.0 70 IA STABLE
D : 37 IB STABLE
57 IB STABLE
MIR17(30) 0.5 18 IB STABLE
D -4 B NEUTRAL
21 1B STABLE
10 IB UNSTABLE
13 IB STABLE
MIR18(32) 1.2 27 1A BIOSTABILIZED
D -4 1B NEUTRAL
-1 I FLUIDIZED BED
MIR19(33) 0.9 34 1A BIOSTABILIZED
D -3 IB NEUTRAL
-1 1I FLUIDIZED BED
MIR20(34) 1.1 -34 1A BIOSTABILIZED
D - 15 1B UNSTABLE
2 i NEUTRAL/FLUIDIZED
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sites was 8.5 m, while the water temperature was 16.5 °C and the salinity was circa 23 ppt.
Water depths at the pre-disposal Experimental stations ranged from 5.2 to 5.8 m; the water
temperature was constant at 17.9 °C and the salinity was circa 22 ppt. Water depths at the
post-disposal Experimental stations ranged from 4.9 to 5.5 m; the water temperature varied
between 15.0 and 15.6 °C and the salinity varied between 19.1 and 20.1 ppt. The 2 °C range
in water temperature is considered to have had only a small effect on the viscosity (2 percent)
and density (0.1 percent) of the eroding fluids and, therefore, has not been considered further.
Salinity also varied with depth, being greatest at the deeper (Channel) stations, but again a 2
ppt change in salinity results in only a 0.1 percent change in viscosity and so has also been
ignored as a variable.

4.2,2 Sensor Calibration

The calibration of the two internal OBS sensors (OBS1 and OBS3) was undertaken by
sampling the sediment/water slurry by pumping from a sample port in the side of Sea
Carousel. This was carried out at each station. Samples were collected at each speed
increment yielding 12-13 samples of systematically increasing suspended sediment
concentration (SSC). Sediment concentration was determined by vacuum filtering a known
volume of water through 0.45-micron pore diameter Nuclepore filters. The filtered samples
yielded a strong correlation with the OBS voltage detected at the time of pump sampling. The
calibration equations and correlfations for the two internal sensors are presented in Table
4.2.2-1. The relationships between OBS voltage and suspended sediment concentration for
each station are shown in Appendix E.

The lid rotational speed derived from the shaft end-coder was verified by monitoring it in the
VHS video tapes of stations MIR4 and MIR20. The correlation between these two measures
was almost perfect (Fig. 4.2.2-1). The Sea Carousel pressure sensor was calibrated against
physical measures of depth. The pressure output (in millivolts) showed a linear calibration
with depth (Fig. 4.2.2-2) of the following form:

DEPTH (m) = 1.54 + 7.03 (PRESSURE)

The current speed in the flume was verified by the digitization of particle trajectories in the
high-resolution Sony tapes. The height of these particle trajectories (circa 6 cm) differed
from that of the EM. flow meter. The transform to the height of the current meter follows
"Law of the Wall" to compute first the friction velocity U*:

U(Z) = (U¥/K). I(Z/Zo)

where U is the friction velocity {t/p), k is the von Karman's constant (0.40), Z is the height
of the velocity measurement (U), and Z, is the roughness length (herein equated with 2.5
times the grain diameter, dsg = 40 microns, Zo = 0.10 mm). Thereafter, the Law of the Wall
is used to recompute the current velocity at a height (Z) of 0.20 m, the height of the flow
meter. The results are shown in Figure 4.2.2-3. The transform is a clear water one, and does
not consider turbulent dampening by suspended solids through an increase in density and the
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Table 4.2.2-1. Calibration equations of the lower (OBS1) and upper (OBS3) optical
sensors used to determine suspended sediment mass (mg'l) from output voltage (CC

is the correlation coefficient).

STATION OBS 1 OBS3 cC N
MIR1(6) 446 +2.70 (0BS1) -861 + 3.20 (0BS3) 12
MIR2(7) 547 +2.28 (OBS1)  -793 +2.96 (0BS3) 0.92 12
MIR3(8) 431 +2.10 OBS1)  -681 +2.72 (0BS3) 0.94 12
MIR4(9) 495 +2.00 (OBS1)  -649 + 2.50 (0OBS3) 0.98 11
MIR5(13) 304 +3.33 (0BS1)  -786 + 3.33 (0BS3) 0.90 11
MIRG(12) BURJED -834 + 3.05 (OBS3) 11
MIR7(3) 602 +2.13 (0BS1)  -677 +2.63 (0BS3) 0.98 11
MIRS(20) BURIED -4160 + 14.3 (0BS3) 7
MIR9(21) 436 +3.38 (0BS1) 1211 - 8.90 (OBS3) 0.96 11
MIR10(22) BURIED -1025 + 4.14 (0BS3) 0.96 13
MIR11(23) BURIED 3132+ 10.29 (OBS3)  0.83 12
MIR12(25) 468 +2.24 (0BS1)  -815 +2.97 (0BS3) 0.99 12
MIR 13(26) 520 +2.20 (0BS1)  -683 +2.8 1 (OBS3) 0.98 13
MIR14(27) 441 +235(0BS1)  -848 +3.04 (0BS3) 0.99 12
MIR15(28) 873 +3.89 (0BS1)  -1228 + 4.98 (0BS3) 0.98 13
MIR16(29) BURIED -805 + 3.52 (0BS3) 0.81 12
MIR17(30) 1044 +4.12 (0BS1)  -1356 + 5.43 (0BS3) 0.92 13
MIR18(32) 677+ 6.00 (0BS1)  -1973 + 7.28 (0BS3) 0.85 10
MIR15(33) 758 +6.03 (0BS1)  -2300 + 7.41 (0BS3) 0.90 12
MIR20(34) 986 +8.39 (0BS1)  -2745 + 9.75 (OBS3) 0.85 13
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consequent enhancement of the viscous sub-layer. Nevertheless, a good relationship between
the two methods for determining current speed was found. The plot suggests that our sensed
values of current speed may be underestimated by a maximum of 5 percent at the highest
speeds. This equates to an under-prediction of bed shear stress of circa 25 percent.

4.2.3 Control Site

Time series of the results from the Sea Carousel at the Control sites (MIR12, MIR 13, and
MIR 14) are shown in Figures 4.2 3-1 to 4.2.3-3, respectively. The seabed was tested under
12 increments of speed ranging up to a maximum lid rotational speed of circa 1.2 m sec™}.
The increments of lid rotation were all of equal magnitude.

The video records showed the seabed at the Control site to be smooth, but bioturbated,
probably largely by shrimp. We saw no evidence for a fluid mud layer as the visibility of the
seabed was good in all cases.

4,2.3.1 Threshold Stresses for Bed Erosion

The threshold for seabed erosion varies with depth in the sediment as a function of the friction
angle. 1t is equated with the applied bed shear stress at sediment failure during the erosion
process. For present purposes, we use this to define the sediment strength at the mudlime. It
is used as our index of sediment strength. Within the context of bed erosion, it 1s "the
threshold stress for bed erosion". It is also known as "cohesion” because the effective stress
(sediment weight-induced) is zero. The thresholds are summarized in Table 4.2.1-2 (as
cohesion) for all stations. Also listed is the friction angle (in degrees), the erosion type (Amos
et al. 1992), and the bed states (stable, unstable, neutral, fluidized, and biostabilized).

The results from the Control site showed remarkably consistent trends (Figs. 4.2.3.1-1 to
4.2.3.1-3). The thresholds varied by only 0.1 Pa (1.3-1.4 Pa), and were amongst the highest
detected in the survey. The sediment state was in all cases unstable (negative friction angle) at
the surface, neutral immediately beneath, and stable at the lowest eroded sections (positive
friction angle). The erosion type was IB; that is, there is a peak in the erosion rate at the
onset of the applied bed shear stress that diminishes asymptotically with time (over 5 min).
Sediments were of low consolidation, as friction angles were less than circa 20°.

4.2.3.2 Erosion Rates

The erosion rates for the Control sites are plotted in panels C of Figures 4.2.3-1 to 4.2.3-3.
The patterns of erosion largely foltow type I (asymptotically decaying with time). Initially, we
see a relatively high erosion rate at very low flows {< 0.1 m sec-1), that corresponds to the
suspension of loose organic "fluff’. This erosion is short lived and accounts for a small
proportion of the bed. Peak erosion rates are on the order of 5 x 10-4 kg m% secl. At
intermediate flows (0.1 to 0.3 m sec”1), type IB erosion prevails and the peak erosion (EP)
shows a systematic increase with current speed, from 2 x 10% to 1072 kg m-2 sec!. The
base erosion rate (EB) is the minimum erosion rate detected at the end of each speed
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increment. It too shows a systematic increase with current speed from 3 x 107> t0 7 x 107
kg m-2 sec-l. At current speeds in excess of 0.4 m sec™!, both EP and EB remain relatively
constant at values of 10-3 and 2 x 10-% kg m2 sec-1, respectively. Neither EP nor EB show
any overall relationship to either current speed or bed shear stress, as the highest erosion rates
takes place at intermediate current speeds.

4.2.3.3 Deposition Rates

The deposition rates of suspended sediment were determined at the end of each experiment
under still water conditions. The purpose of this procedure was to evaluate the potential for
fluid mud generation under ambient, natural conditions. These tests supplement results of
laboratory settling experiments on Miramichi sediment samples previously performed by the
Acadia Centre for Estuarine Research (Amos et al. 1992). Still water settling of suspended
matier results in an exponential decrease in sediment concentration with time. This may be
expressed as;

SSC(t) = SSCo exp[-kt]

where SSCg is the initial concentration, t is elapsed time, and k is the decay constant (in units
of reciprocal seconds). The decay constant is an index of mass settling rate and is always
negative during settling. Also, the greater the value, the greater is the settling rate. The

potential for fluid mud generation increases as k approaches 0. Estimates of k are summarized
in Table 4.2.3.3-1.

The suspended sediment concentration at two heights within the Sea Carousel for the Control
stations are shown in Figures 4.2.3.3-1 to 4.2.3.3-3. The concentration half-lives of
suspended material show differences between the near-surface and near-bed in the Carousel.
These differences are not, however, systematic, and so no general conclusions can be made
regarding the settling rates as a function of height above the bed. For the Control sites, the
half-lives vary between 133 and 198 sec, and the equivalent decay constants vary between
-0.0025 and -0.0052 (a factor of two). These values fall within the range presented by Amos
et al. (1992), but are generally higher for equivalent starting sediment concentrations. We
conclude that the potential for the generation of fluid muds 1s low, as settling takes place
quickly.

4.2.4 Channel Site

Two stations were occupied within the navigation channel of Miramichi Bay, MIRS (Station
13) and MIR6 (Station 12). The stations were situated in 8.5 m within Reach 22. The water
temperature at the stations was 16.5 °C and the salinity was 23 ppt. Good data were obtained
from both stations, although the lower OBS sensor was buried during deployment MIR6. The
time-series of the two stations are shown in Figures 4.2.4-1 and 4.2.4-2. The seabed was
tested under twelve increments of velocity ranging up to a maximum lid rotational speed of
circa 1.2 m sec”l. The speed increments were all of equal magnitude. The video
observations showed the bed to be in a gel-like state and heavily bioturbated. We saw no




Table 4.2.3.3-1. Summary of the concentration half-lives (ty_s) and the decay
constants (k) for the settling of suspended material within the Sea Carousel (k is
valid for units of sediment concentration in mg I=; they should be multiplied by 1000 to
be comparable to those reported by Amos et al. 1992),

Near Surface Near Bed

Station t).5 (sec) k (sec’l) tg.5 (sec) k (sec-1)
MIRI(6) 298 -0.00232 122 -0.00566
MIR2(7) 106 -0.006064 129 -0.00535
MIR3(8) 122 -0.00566 122 -0.00566
MIR4(9) 57 -0.01200 111 -0.00621
MIRS5(13) 183 0.00373 14 -0.04810
MIR6(12) 90 -0.00770 buried buried

MIR7(8) 190 0.00363 237 -0.00292
MIRS(20) 187 -0.00370 buried buried

MIR9(21) 32 0.00837 90 -0.00770
MIRI10(22) 180 0.00385 183 0.00378
MIR 12(25) 133 0.00520 1354 0.00448
MIR13(26) 198 -0.00250 190 0.00363
MIR14(27) 176 0.00393 194 0.00357
MIR15(28) t31 0.004338 187 -0.00370
MIR 16(29) 82 0.00837 buried buried

MIR 17(30) 82 -0.00838 111 -(.00621
MIR18(32) 176 -0.00363 133 -0.00520
MIR19(33) 165 0.00419 129 0.00535

MIR20(34) 320 000216 90 -0.00770
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evidence of a fluid mud layer as the visibility of the bed was good, and the penetration of the
Carousel was limited, though greater than at the Control site.

4.2.4.1 Threshold Stresses for Bed Erosion

The thresholds for bed erosion were determined from Figures 4.2.4.1-1 and 4.2.4.1-2. The
threshold stresses for bed erosion were 1.0 and 0.8 Pa. Both stations demonstrate a decrease
in strength with depth from the surface over the top 2 mm. The sediment strength at 1 mm in
station MIRS virtually went to zero, suggestive of a fluidized bed. At station MIR6, the
strength increased below 2 mm diagnostic of consolidation, although the low friction angles
attest to their potential mobility. The surface strength values are consistently below the values
for the Control site. If we ascribe the surface strength, experienced at this or other locations,
to either biological or physico-chemical stabilization process acting at the surface, a reduced
strength would be expected below the surface where bioturbation and decay process may be
dominant.

4.2.4.2 Erosion Rates

The erosion rates for the Channel sites are plotted in panels C of Figures 4.2.4-1 and 4.2.4-2.
The pattemns of erosion largely follow type I (asymptotically decaymg with time). Initially, we
see a relatively high erosion rate at very low flows {< 0.1 m sec” 1), that corresponds to the
suspension of a loose organic "fluff". This layer may be indicative of disturbance by benthic
microinvertebrates. This erosion is short-lived and accounts for a small proportion of the bed.
Peak erosion rates are in the order of 5 x 104 kg oy ¢l At intermediate flows (0.1to
0.3 m sec™ 1), type IB erosion prevails and the peak erosion (EP) shows a systematic increase
with current speed, from 2 x 104 t0 1072 kg m-2 sec"!. The base erosion rate (EB) 1s the
minimum erosion rate detected at the end of each velocity mcrement It too shows a
systematic increase with current speed from 3 x 1073 to 7 x 1074 kg m -2 sec- 1. At current
speeds in excess of 0 4 m sec™!, both EP and EB remain relatively constant at values of 10 3
and 2 x 107 kg m- sec'l, respectively. Neither EP nor EB show any overall relationship to
either current speed or bed shear stress, as the highest erosion rates take place at intermediate
current speeds. Thus we observe two domains to bed erosion. The first, at flow speeds
below 0.3 m sec™, is where erosion rate increases with current speed. The second, at flow
speeds in excess of 0.3 m sec™1, is where erosion rate remains more or less constant and
independent of current speed.

4.2.4.3 Deposition Rates

The deposition rates were determined from the time-series plotted in Figures 4.2.4.3-1 and
4.2.4.3-2. The settling rates varied considerably between the two stations, and so a trend is
not evident. Results for MIRS suggest a brief period (12 min) when negligible settling took
place despite the absence of flow. This phenomenon is called "hindered settling”, and is a
major factor in the development of fluid muds. The hindered settling takes place at a starting
concentration of cirea 4000 mg/l. We interpret this to be the result of very high organic

6%
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contents within the Channel sediment. We also note that hindered settling was not detected i
the Amos et al. (1992) laboratory study, nor was it evident at station MIR6.

4.2.5 Pre-disposal Experimental Site

Four stations were occupied at the Experimental site prior to deposition of spoils: MIR1
(Station 6); MIR2 (Station 7); MIR3 (Station 8); and MIR4 (Station 9). The water depths at
these locations varied between 5.2 and 5.8 m. The water temperature was consistently 17.9
°C, and the seawater salinity was circa 22 ppt. Good results were obtained at all stations,
although the low-light VHS system failed at the first two sites. The seabed was tested under
eleven increments of velocity up to a lid rotational speed of circa 1.2 m sec"l. Temporary
failure of the power supply to the Sea Carousel motor led to a small gap in the results during
station MIR 1, Nevertheless, the stations show reasonably consistent trends in strength and
stability. The time-series of the four stations are shown in Figures 4.2.5-1 to 4.2.5-4. The
highest bed strengths of the survey were detected at this site. Also, all appear to have a
stabilized surface and to be stable at depths below 2 mm.

4,2.5.1 Threshold Stresses for Bed Erosion

The plots used to derive the threshold stresses (surface) for stations MIR1 to MIR4 are shown
in Figures 4.2.5.1-1 to 4.2.5.1-4, respectively. The values are generally the highest detected
in the survey, varying up to 1.5 Pa, Stations MIR1 to MIR3 are remarkably similar
suggesting a relatively homogenous seabed. The friction angles are all negative at the surface
suggestive of biostabilization: i.e., adhesion produced by the mucilage of microorganisms
{e.g., benthic diatoms, bacteria and fungi) has a stronger effect than does the cohesive strength
of the sediment. This layer is between 1 and 2 mm thick. Beneath this surface layer, the bed
strength increases with depth, presumably due to the dommating influences of consolidation
by the overlying sediment column.

4.2.5.2 Erosion Rates

The erosion rates for the pre-disposal Experimental stations are plotted i panels C of Figures
4.2.5-1to 4.2.5-4, The patterns of erosion largely follow type I (asymptotically decaying with
time). The peaks in erosion rate at the onset of each speed increment are clearly seen in
Figure 4.2.5-2, and the subsequent asymptotic decay is exemplified in Figures 4.2.5-3 and
4.2.5-4. We see no evidence for type TA erosion, as was evident in the Channel. We attribute
this to lower levels of organic matter at this site, together with lower benthic invertebrate
activity (seen in the video tapes). Type IB erosion prevails throughout. With reference to
MIR], the peak erosion (EP) shows a systematic increase with current speed, from 2 x 1074

to 4 x 1073 kg m~ -2 sec”l. The base erosion rate (EB) is the minimum erosion rate detected at
the end of each velocity i mcrement It too shows a systematic increase with current speed
from 4 x 107 to 4 x 10° kg m2 sec-l. At current speeds in excess of 0.3 m sec~ L, both EP
and EB remain relatively constant at values of 4 x 107 and 3 x 104 kg m-2 sec1,
respectively. Neither EP nor EB show any cverall relationship to either current speed or bed
shear stress, as the highest erosion rates take place at intermediate current speeds. As at the
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Figure 4.2.5.1-1. Relationship of shear stress and depth at pre-disposal Experimental site
MIR1 (Station 6).
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Channel sites, we observe two domains to bed erosion. The first, at flow speeds below 0.3 m
sec™l, is where erosion rate increases with current speed. The second, at flow speeds in
excess of 0.3 m sec™|. is where erosion rate remains more or less constant and independent of
current speed.

4.2.5.3 Deposition Rates

The time-series for settling for stations MIR1 to MIR4 are shown in Figures 4.2.5.3-] to
4.2.5.3-4, respectively. The deposition rates show a significant variation in trends between
the near-surface and near-bed measures. The near-surface half-lives vary from 57 to 298 sec
(a factor of 6). By contrast, the near-bed measures are stable and constant, varying only
between 111 and 129 sec. That is, the SSC will be approximately halved each 2 min. Even
the highest SSC's generated in Sea Carousel (6000 mg I-1) settled to near-ambient conditions
within 10 min. This indicates that the potential for long term fluid mud generation at these
sites 1s very low.

4.2.6 Post-disposal Experimental Site

Eleven stations were occupied on material excavated from the navigation channel and newly
disposed within the Experimental disposal site. These stations are MIR7 (Station 8), MIR8
(Station 20), MIR9 (Station 21), MIR 10 (Station 22), MIR11 (Station 23), MIR15 (Station
28), MIR16 (Station 29), MIR17 (Station 30), MIR18 (Station 32), MIR19 (Station 33) and
MIR20 (Station 34). The time-series of the eleven stations are shown in Figures 4.2.6-1 to
4.2.6-11. Most stations were subjected to twelve increments of increasing lid rotation of
equal magnitude. Stations MIRS5, MIR8 and MIR18 were subjected to less increments of
longer intervals due to logistical constraints. The change in procedure produced no obvious
effect on the results. These stations exhibited the greatest variability in both the threshold for
erosicn and in terms of sediment stability {friction angle). The mean threshold stress (circa
0.7 Pa) is approximately half that of the underlying pre-disposal seabed. 1t is also significantly
less than the original Channel material before dredging, indicating a loss of strength during the
dredging and disposal process. Nevertheless, there is a general trend towards increasing
strength with time. Within three days, it had recovered much of its former strength. This
recovery may be related to biostabilization process by microorganisms, particularly bacteria
and fungt.

4.2.6.1 Threshold Stresses for Bed Erosion

The thresholds for erosion were derived from Figures 4.2.6.1-1t0 4.2.6.1-11. These
thresholds varied considerably from site to site and with time. The mean threshold was 0.7
Pa. The friction angles were also highly variable, being both negative and positive. The
scatter in results is probably due to the blocky nature of the dredged material. Upon disposal,
these blocks will present, at the mudline, sediment from a range of depths that 1s controlled by
the dredging depth. As well, a range of orientations and attitudes would be expected in the
blocky disposed material. Despite the scatter, there appears to be a trend in results that
suggests an increase in the erosion threshold with time. The approximate age of the disposed
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Figure 4.2.6-3, Time series of Sea Carousel results at post-disposal Experimental site MIR9 (Station 21),




91

TUARY

L ES

Hi

{
1993

RAM

~ Il

L

~
L

Ou

|

~EA CAR

-
1

3 JUL

2

STATION MIRLO

ARV DNTLLLES

ION PHARE
s
] N
SRR
e

EROE
et

LID ROTATION

VERTICAL FLOW

AZIMUTHAL FLOW
T

[ 7]
-

(=00 G LN RN

MT

[

(

=
—

TIM:

P
oMo A
2 oa o=
el f—
5 2

1 = o] @]
el o — [fp]
e e
71 o2 tr e
m m m g
O < (] o

aa}

I | . | L [ p=
O -] ] 4]
[ ] ) [
. - ] [
o0 o =t AN

("1/Bwy ONOD

o)
Lo

[
/

s
{GM

Mz

I
-y

| O 6 O o |

=7

e

ERRYAS

s Iaiain
[ ORSINA

MO0

[
[

)
X

o
D

-

T
o

(G:.

TIME

Figure 4.2.6-4. Time series of Sea Carousel results at post-disposal Experimental site MIR10 (Station 22).



od
(=]
Ly (r (1)
Y T ﬁ.uh ml_ " 1 1 1 .4 | # 1 =] ...-..1 L | I W__ﬁ__ O H LN I T I I J ﬁn‘_._
8%
— m \ __w _m__ ) /
T . A% LW o
.\Lv 5 _ - . f . — H —
E . P ) 5 [S5]
- vl
[ & \ o,
. W T 1 I
o : -
o o : :
) o ! H - ~ T -
bt ) ) B <) =I * =t
— — N ' . B . :
-~ § O ’ . A, Tl 3
> = | S
Moo g | N‘ =
T||“ — -1 : ) } [
—- B ~ N
i o i ! S i c.a
0 m Dl M F - = .
AN Y " - / ﬁ/.ﬁ s Dl m/._
A A G.w St — ._ o s Vl .
| o W T
wl.Hru werf o o —
A= & = g _
. — [} b — - ~ )
VIS S o g o Mo < ) -
, SRS ¥ - 2 B B 15
P oA ;O 2 o = o) (9}
v O sEr = = & < - -
[ o U E = =)
- B o o ~ =W
G A B S
B = BN oo =
A ~ e M m
=) ] o
\Aﬂ ] > - > 8 H nﬁ nﬁu
L] i 00 B oo R )
i - . - .
/) ~
- -
m |
# 9] (A& (O
i . ol | - Qu. TS 1RO OVOY VOUOY YOO EVURT TN U TN SN VU N O N GO S A 8 PRI S W WO [ W 1 15 0 H N U X OO O 1O SRS B Q.p.w
A 2 o o O o O O O o O QO O v = v T
: : QO O O O O 0O O a - ] j. O
N O O o O O QO O O O 9 ] 2 -
w0 W o= D O =k O o O ] -
e 171" -~ P - — — — Lo o >
(s/01) (3345 LNIFFAND © “

(/BUy SNOD 3% d9NS .
(=/7 /) v OO0

v

GMT}

(

N

C.

Hi

Figure 4.2.6-5, Time series of Sea Carousel results at post-disposal Experimental site MIR11 (Station 23).



93

TUARY

[N

ICH:
1993

A M

AR

Y
TATION MIRLS

<
2

1

T
[N Y

SBEA CARC

24 JULY.

EROSICN PHASE

LID ROTATION

A

SVEC

VERTICAL FLOW

AZIMUTHAL FLOW

ONILLLSES

e m e
H
o .

1

AN O S A

MT

;o
‘2

s
i
i

FiME

1 1 _ R r _ m..w.lf
F
.
o
r
\ i
_ W
./..‘ f/ ".,
A ;
.\ ;
..;, \ W
< i
N. M Y
\
) M__
\
/ |
\ !
— 7 //
R SR
B2 BHOF
= o et
o = B
2 2 2 &
- -l [n [aa} w B
17 w 1p] =
[as} m [am} -1,
o (] (] [a
- m e
1 | | | (. | \ | |
O ] [ 4] () ] . ]
[ [ (G (@8] [ (W]
[a»] [ (] [ ] [\l
[aN| [ 5 9] [te <~} o
(1/6W) ONOD IS dSnS

491
]
[

(]
[ |

-

[

& 5

1

.

LLLL Lt

* -

i_m___ §

- *

Frrve v
ol

S8

[
Iy

,/_.
(o]
[

o

[
[

O
[

1 __.. JLiolo 1

m o S

D G

LD T v

aTar
"

W

U

00T

ey
Yool
Fogd

L

2 a
iT T

wf

MOS0

oM

28).

Figure 4.2.6-6. Time series of Sea Carousel results at post-disposal Experimental site MIR15 (Station



CURRENT SPLED (/)
o

ED CONC (mqg/L)

S

SUSP

Figure 4.2.6-7.

STATION MIRL

LID ROTATION
+  VERTICAL FLOW

P = AZIMUTHAL FLOW

EROZION PHAS

v
i

PHASE

["I'EING

it
N

TE

\J.':

g . -
124 5.0 BRI g4 tE Lz
TIME (SMT)
HelE
I B - 0BS1 (LOWER)
- e OBS2 (MIDDLE)
- OB53 (UPPER)
U - — RAW SSC (MEAN) ] - -
|
= - s e i
| E o ol i P, y"”‘(A‘_V y
R POR Sl T . :
o e T, e T e e T T T e
15.4 5.8 HoRS 5.0 Rz 2.4 2.2 EE
: r
T ¥
3 ' .
s s ! * '
o » L =
- i " ;.
’ . ' :
H \ ] i -
: . i
- o : =
= ., .
- ’ s -
- _l Rl
- B YpeE IBY | 0
. : ; . i
154 123 5.2 s TE2 15.4 122
TIVI (VT

Time series of Sea Carousel results at post-disposal Experimental site MIR16 (Station 29).




95

E
/)

1943

o JULY.

>

MIRTY

TATION

o
™~
.,

=B

[ON PHA

—
s
[

ERO:

LID ROTATION

[u)

A

(500 TS LR3HEND

ENART

VERTICAL FLOW

-

oW

AZIMUTHAL FL

a7

ONTLLLAN

g

¥

TIME {GMT)

000 -

o

- o %
2 Hom o
HE o B =
= o5 & O
o — e O
= 2 2 &
)
L n [ap]
1) v =
jn) m m -1
o O o m
: “
jan}
I 7 | rl_l.. a— )
) !
O ]
(] ]
w <

o
-

ONOD IS d5NS

(R

[

[

98]

0

]
1)

10

8.

o
L2

[ 0 0 R P .m__v__ 1.l

-

ﬁ.ﬂ;\

i : -

Rhaty
L...O — 4

=g
Jireraaia

d
~
i

"1\

™)

U

-
GG

I}
{
s

D) I MOS0

[0

m

ty

(%)

L
o0

™|

)

2o

§e)

17.

ST
- \L\/‘I‘)

M

T

Figure 4.2.6-8. Time series of Sea Carousel results at post-disposal Experimental site MIR17 (Station 30).




96

“,\.r.ﬁ r | 1 T i | ﬁ r 1 7 | M | _ et | nmirl1 | _____.,__ 1

:J\< & S g . el
- A -] e mmmzmmTmi oo g] ! _ — o ., !

\j I ﬁ 1 . . 1

"..L " - m . . Jr T

NIe Y ITARRNIS m e e
s sV DNTLELS f h R
e I

vt ST I ek ot - 4oy

N P C e Dl ——————— ._, : -] kM I !
(R ; & 30 N,/ e

1993

b N ™ i
U bt [ g / / | oo
) f 1 T X 44” J;,a . L L
— o 8 PR i i T
e ; - L
= % [, : L i ! - =
7, O o o
- g T e
_ | m g o LX) L
7 o | 1t
o ~t = =t s =
L © o = T = _
e ] i
- [a's) !
/) — f ;
B _ _
- =)
- :

=

C (MEAN)
1

=,
TATION

<

{
=
88

N

i =
' e
- <F _ , “ IEESE u - T -
- , I RS .|
: ; ; \ .
. : : o »_ " b

LID ROTATION
VERTICAL FLOW
AZIMUTHAL FLOW
0B21 (LOWER)
08s2 (MIDDLE)
OBS3 {UPPER)

TYPE IA

RAW

=
L —
[ ]

A
i
A
|
B
‘;
C
A
:

[ [ [
[ | | | | A‘_” S T PR TR T T U U SO VRN (R TN I ES -F A ST B N bvve a0 <
s . s o = T = = S v B B T o S R o — o -
- - o Qo o o o g O o o - -
- - 2 Soa o 0 O O O O - o = &
ol =~ Q] [ oo [te] ~t [N - hl\J. A.fp, [

(50 TS LMD T ” = z
(1/6W) NGO d3% JSNS ]
(/7 /0y L) MOS0

M
Figure 4.2.6-9. Time series of Sea Carousel results at post-disposal Experimental site MIR18 (Station 32).



97
SEA CARCUSEL — MIRAMICHD ESTUARY
STATION MIR19 — 26 JULY. 1993

(]

)

_ A © LID ROTATION EROSION PHASE

: «  VERTICAL FLOW e, =
Lo - AZIMUTHAL FLOW 7 z

RN

O
5.0
TIME {(GMT)
1EST0
- % [ ‘ i 3
IR0 - A B
< YYD B e 0BS1 (LOWER) : -
S 14000 - ~
S L e OBS2 (MIDDLE) B
712000 - ~
© 2 - OBS3 (UPPER) i -
= 10000 - s B
8 - - —— RAW SSC (MEAN e -
2 8000 b (MEAY) p | ;
S Bo00 | e AT B
) ul..!\.J_J — B _ ’/‘___. \ :
- r ~ e ! -
Co L2000 - - _
o ] )
5 2000 - | B
6.0 0.7 5.8 B E-
THAD {OMT
=~ 0.001 B .
8% E =
= I .
T L B -
g Py by
_ SOt =t Lo
. S .
[ e I i z
o - s -
L0000 -
TIME (GMT)
Figure 4.2.6-10, Time series of Sea Carousel results at post-disposal Experimental site MIR 19 (Station 33).




98

_ I r 1 i I ﬁ I ! Trre 1 __:___, | - _::4__ |
, -

\Lf

0, . 53 I v
- Y ' e : — N i ST e - N
- DSV DNTPLLLS ! - o st 0
— i -
= o |
(f e | .
(/i S ‘ : . -
SR J I wad e @
Tl /,/ 4o .Ni\t e [] 48]
VHA ., . /, M . & DL c—
= On., ;/... /.,
[ ) —_ X !
— ) A, o=l =
PR N . E A
- D L -
i) ) 1 - ~
(¥, = -, Ty
i ) L - 5
[ NS [ } fo-
SN - = b g =
. a Ve & o
L S = A o
[Smanl - —_
g L iy b i
T e
- Y ' t— 8 [
f] ¢ o _
- o I
_\._ — Ty ()
e = D = T o
O 7 L 53 - 8 g 2
@] &3 [ - TS|
= =l g 2 o =®H O
E E = = o b
T - =g = W 0 T
Ty b ok - &= a oo = V%)
- 1) [ 73] ! . -
Y o3 F o 0 2 t 1 ™
7 S =S vz B o= |- ]
E o S o o o | O,
! T
i B : i e
! o W_, Een
: At W
. - LI O e ~
” g e el -
i .
N NSRS N YU N PO NN NN NN WS NN U T SR R IR DR ' W AET N S N T 0 W U O SRS D
L ( @] [ SO G T A N A N 0 R B B o T — v -
. _ [ (W] jan} [ [ [ O . - 1 (-
, D oa o O 0o g O O - o & e
¢ R0 S SV AR To B X — & I
o - Y o - -~ — - oy -
(6,007 (199005 LMIN&ND N e I

(/Bw) oNOD G3S Jd50S o ,
(/2w /D) JIvY MOISCe
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Figure 4.2.6.1-1. Relationship of shear stress and depth at post-disposal Experimental site
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Figure 4.2.6.1-6. Relationship of shear stress and depth at post-disposal Experimental site
MIR15 (Station 28).
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material, the sediment strengths, and the (near-surface) friction angles are shown in Table
4.2.6.1-1. Notice that we analyzed disposed material from within 2 hrs after emplacement to
approximately 62 hrs after emplacement. The time-series of the erosion threshold (ET) of the
disposed material over this period of time is shown in Figure 4.2 .6.1-12. The increase in bed
strength is clear. This strength increase 1s a linear function of time, of the form:

ET =0.30 +0.0106 (¢)

where the erosion threshold (ET) is defined in pascals and time (t) is defined in hours. Notice
that the strength of the disposed material exceeds that of the original Channel sediment (0.8 -
1.0 Pa) within approximately 48 hrs, and that by the end of the survey it was slightly stronger
than the original Channel material (1.0 - 1.2 Pa).

The time-series of the near-surface friction angle is shown in Figure 4.2.6.1-13. In this figure
we see a stabilization of the sediment over the first 28 hrs, reflected by a rapid increase in
friction angle. This we attribute to normal consolidation processes. Thereafter, we see a
decrease in friction angle to values typically associated with biostabilized seabeds. This period
of time (28-62 hrs after disposal) we interpret as a period of re-colonization by benthic
communities, and the development of an adhesive strength at the surface of the deposited
material.

4,2.6.2 Erosion Rates

The erosion rates for the post-disposal Experimental sites are plotted in panels C of Figures
4.2.6-110 4.2.6-11. The patterns of erosion largely follow type IB (asymptotically decaying
with time). The peaks in erosion rate at the onset of each speed increment are clearly seen in
Figure 4.2.6-3. The subsequent asymptotic decay is also exemplified in this figure. This type
of erosion prevails at current speeds less than 0.5 m secl. We see no evidence for type 1A
erosion, which is evident in the Channel. We attribute this to lower levels of organic matter at
this site, together with lower benthic biological activity (seen in the video tapes). Type Il
erosion prevails in the latter stages of stations MIR8, MIR11, MIR15, MIR19, and MIR20.
Type 1I erosion occurs at current speeds in excess of 0.5 m sec™!. The peak erosion (EP) in
general shows a systematlc increase with current speed up to circa 0.2 m sec!, from 2 x 10° -4
to4 x 107 kg m2 sec™. Thereafter EP remains roughly constant with speed and has values

that vary between 7 x 10'4 to 107 ko m-2 sec”!. The base erosion rate (EB) is the minimum

erosion rate detected at the end of each velocity mcrement It %enerally shows a systematic
increase over the range of current speeds, from 4 x 107 to 107 kgm 2 sec1)

4.2.6.3 Deposition Rates

The time-series for the suspended sediment settling monitoring for the post-disposal stations
are shown in Figures 4.2.6.3-1 to 4.2.6.3-10. The nearsurface settling rates show significant
variations in concentration half-lives between 82 and 320 sec (mean tg 5 = 146 sec).
Nevertheless, the concentration decay generally follows an exponential decay pattern. The
decay constant (k) has a mean value of -0.0051 secl. The decay constants (and half-lives} are

110
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Tabie 4.2.6.1-1. Erosion thresholds (cohesion) and friction angles of disposed )
material, listed in terms of age (time) after disposal.

AGE COHESION FRICTION
STATION (hrs) (Pa) ANGLE
MIR8(20) 2 0.3 34
MIR15(28) 3 0.8 -8
MIR9(21) 12 0.6 70
MIR16(29) 21 0.0 70
MIR17(30) 23 0.5 18
MIR10(22) 24 0.5 78
MIR11(23) 26 1.0 29
MIR18(32) 55 12 27
MIR19(33) 60 0.9 34

MIR20{(34) 62 L1 -34
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Figure 4.2.6.1-12. Time series of the erosion threshold of spoils deposited at the
Experimental disposal-site.
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¥igure 4.2.6.3-1. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR7 (Station 8).
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Figure 4.2.6.3-2. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR8 (Station 20).
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Figure 4.2.6.3-3. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR9 (Station 21).
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Figure 4.2.6.3-4. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR 10 (Station 22).
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STATION MIR15 - 24 JULY, 1993
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Figure 4.2.6.3-5. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR15 (Station 28).
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Figure 4.2.6.3-6. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR16 (Station 29).
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Figure 4.2.6.3-7. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR17 (Station 30).
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Figure 4.2.6.3-8. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR 18 (Station 32).
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Figure 4.2.6.3-9. Relationship between sediment concentration and time during Sea Carousel
settling rate measurements at post-disposal Experimental site MIR19 (Station 33).
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listed in Table 4.2.3.3-1. The nearbed concentration half-lives are much more consistent that
the near surface ones, and show a mean concentration half-life of 164 sec. The associated
mean decay constant (k) 1s -0.0050 sec’. These settling rates are consistent with results
presented by Amos et al. (1993) and suggest a low potential for fluid mud generation.

4.3 SOBS Results

4.3.1 Control Site

The SOBS deployment at the Control site (SOBS1) was located at Lat: 47° 07.92' W, Lon:
65° 09.82' N (Station 1). The site was situated in 5.8 m of water approximately 75 m north of
Reach 22 of the Miramichi Channel. It was deployed at 14:36 Atlantic Daylight Time (ADT),
on 14 July 1993 (Julian Day 195) and was recovered at 12:35 ADT, on 20 July 1993 (Julian
Day 201); a duration of 142 hrs. SOBS worked continuously throughout the deployment. It
detected coherent resuspension events associated with the flooding tidal currents and with
periods of strong wave activity. The OBS sensors also detected coherent resuspension events
associated with the arrival of the M/V Mariner at 0745 ADT, 15 July 1993 and again with this
ship's departure at 0700 ADT, 16 July 1993. Numerous other non-coherent events were
detected. None could be firmly ascribed to dredging activities.

The time-series of results from SOBS1 are shown on Figures 4.3.1-1 to 4.3.1-16. The figures
illustrate the suspended sediment concentration (to a maximum of circa 3000 mg-1) from the
six OBS sensors, as well as the depth recorded by the pressure sensor. Each figure shows
approximately 9 hrs of data. Full saturation of OBS1 suggests that it was close to the seabed
or buried within it, All remaining OBS sensors showed backgrounds of between 100 and 200
mg-1. OBS2 (the lowermost horizontal sensor) showed the greatest activity, while OBS's S
and 6 showed the least. This suggests that small scale local resuspension events take place,
but are restricted to the lowermost part of the water column. Many of these events may be
ascribed to resuspension of organic "fluff” by tidal flow. Figure 4.3.1-2 (hrs 6 and 8) show
events in OBS's 2, 3, and 4 that may be linked to the strongly flooding tide (see depth plot).
Similar phenomena are evident in Figure 4.3.1-7 (hrs 2-5) for the subsequent flood tide and
also in Figure 4.3.1-10 (hrs 2-4). The ebbing tide shows less evidence of resuspension,
although events in Figure 4.3.1-8 (hrs 2-5) may be the result of an ebb tide current.

The 17t0 July 1993 (Julian Day 198) was extremely rough (see depth plot Fig. 4.3.1-9 and
wind velocity data Fig. 4.6-3). We see evidence for resuspension of bottom material within
the lower 0.5 m throughout this rough period. Peaks in SSC are cirea 300 - 400 mg -1, and
are relatively short-lived. The 18th July 1993 (Julian Day 199) was also rough. During this
period, we see evidence of large plumes of turbid water within the lower 0.5 m of the water
column (see Fig. 4.3.1-12; hrs 0-2). Again, we believe that these plumes are due to wave
resuspension of natural bed material, and are not related to dredging or disposal activities in
the region.

The most significant resuspension events took place during the arrival of the M/V Mariner at
0745 ADT, 15 July 1993 (Fig. 4.3.1-3) and again with this ship's departure at 0700 ADT, 16
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Figure 4.3,1-1. Time series of results from SOBS1 deployment at the Control site.
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Figure 4.3.1-8. Time series of results from SOBS1 deployment at the Control site.
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Figure 4.3.1-11. Time series of results from SOBS1 deployment at the Control site.
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Figure 4.3.1-12. Time series of results from SOBS1 deployment at the Control site.
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Figure 4.3.1-13. Time series of results from SOBS1 deployment at the Control site.
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Figure 4.3.1-14. Time series of results from SOBS1 deployment at the Control site.
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Figure 4.3.1-16. Time series of results from SOBS1 deployment at the Control site.
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July 1993 (Fig. 4.3.1-5). These events produced a coherent response in all six OBS sensors.
The bow wave of the ship caused seabed material to be resuspended to at least 1.8 m above
the bed, and resulted in SSC's in excess of 2000 mg~1. The bow wave resuspension event
lasted only about 12 min, It peaked very sharply and thereafter decayed exponentially to
background. A second broader resuspension event trailed the bow wave event; the wake
resuspension cloud. This cloud persisted for up to 1 hr, was of lower concentration (300-400
mg-1), and appeared to show undulations which we associate with cloud advection by the
tide.

No coherent resuspension events could be firmly related to dredging of the Channel.
Although resuspension during dredging was detected in the Channel (as reflections on the
boat depth sounder}), no sediments appeared to spill out of the Channel.

4.3.2 Experimental Dump Site

The SOBS deployment at the disposal site (SOBS2) was located at Lat; 47° 06.81' W, Lon:
09.70" N (Station 38). The site was situated in 5.5 m of water approximately 600 m east of the
Experimental disposal site. It was deployed at 14:00 ADT, on 20 July 1993 (Julian Day 201)
and was recovered at 11:05 ADT, on 27 July 1993 (Julian Day 208); a duration of 165 hrs.
SOBS worked continuously throughout the deployment. The OBS sensors detected many
resuspension events, but none that could be firmly linked to disposal activities.

The time-series of results from SOBS2 are shown on Figures 4.3.2-1 to 4.3.2-19. The figures
iflustrate the suspended sediment concentration (to a maximum of cirea 3000 mg-1) from the
six OBS sensors, as well as the depth recorded by the pressure sensor. Each figure shows
approximately 9 hrs of data. Full saturation of OBS1 suggests that it was close to the seabed
or buried within it. All remaining OBS sensors showed backgrounds of between 100 and 200
mg-1. OBS2 (the lowermost horizontal sensor) showed the greatest activity, while OBS's 3
and 6 showed the least. This suggests that small scale local resuspension events take place,
but are restricted to the lowermost part of the water column. Many of these events may be
ascribed to resuspension of organic "fluff" by tidal flow. Such tidal resuspension events are
evident in Figures 4.3.2-2 (hrs 5-7). Evidence for wave resuspension is apparent in Figures
4.3.2-5 and 4.3.2-6 (22 July 1993) and in Figure 4.3.2-8 (the afternoon of 23 July, 1993).
Most of the disposal of dredged material at the Experimental disposal site took place between
days 201-204 (20-23 July 1993). Coherent events within the water column were detected by
OBS's 4, 5 and 6 on days 202 and 203 (Figs. 4.3.2-3 and 4.3.2-5). However, these events
were of low concentration (200-300 mg-1). Furthermore, a similar event is evident in Figure
4.3.2-16 (Julian Day 207) when no disposal was taking place. Consequently, these events
cannot be directly linked with disposal activities.

The sea state on 25 July 1993 (Julian Day 206} was rough. This period of rough weather
corresponds to the highest and longest-lasting turbid events. Though largely restricted to
OBS sensors 2 and 3, concentrations exceeded 2000 mg-1 and the sensors were saturated for
up to 6 hrs over a 24 hr period (Figs. 4.3.2-13 to 4.3.2-16). This turbid layer was restricted
to the lowermost 0.27-0.41 m of the water column. The dramatic difference in responses
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Figure 4.3.2-3. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-5. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-6, Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-7. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-8. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-9. Time series of results from SOBS2 deployment at the Experimental site,
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Figure 4.3.2-10. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-11. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-16. Time series of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-17. Time series of results from SOBS2 deployment at the Experimental site.

1538




SUSP SED CONC (mg/1)

S | -

SOBSZ — MIRAMICHI ESTUARY STUDY - JULY, 1993

o

Day 208 00:23:50 -

208 09:28:49 ADT

L —
3 . . ; | DEPTH -

8 i B
- o G
F OB=6 :
’_ L L | ! ! I [ 1 L e
E: T T T i T T ¥ I T i T i T T T T T i T T { T -
E E
£ z
£ L
r 0BS5:
Lt L L ooy o} [ Bt ! | ) I L
[ T L L ‘ T ‘ T .« f o« & T T T T T T T T T T T [ lllll }_-
£ -
1— ‘ . -
| s o { . . - ! BT L : H \.u....L
3 :
g :
| . -
" 0BS54 -
i 1 L 1 ! L 1 1 ! \ L 1 L l 1, Il : . - . .
T T - L R S s S S S T LI S =
:u 4 L b L J—JL..-.._ ; mhuhmv%[._ﬂw—u -
z 0B23:
- - L) _
"""" I L IS S S N R - I 1 R _—
= T T L L S T T ER T S S B S Bt S S S i T -
£ i T
C Ll O P
r L ' ¥

v
R

1.1 IIHIII

Y =

A

M
el

D 5 7

TIME (hours)

(%]

Figure 4.3.2-18. Time sertes of results from SOBS2 deployment at the Experimental site.
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Figure 4.3.2-19. Time series of results from SOBS2 deployment at the Experimental site.
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between OBS sensor 3 (saturated) and OBS sensor 4 (low response} suggests that this turbid
layer mud has a well defined surface situated between the heights of these sensors. The rapid
rise in sensor response suggests that the sediments were advected to the SOBS site, rather
than resuspended from the vicinity.

4.4 Lancelot Results

Lancelot was deployed at two sites, Station 4 (Channel margin) and Station 18 (Control), to
assess long term residual excess pore pressures and to determine the natural degree of
consolidation. Time series for Lancelot deployments are presented in Figures 4.4-1 to 4.4-13.
The first deployment encountered sediments on the Channel margin that were much softer
than expected, as the vertical load imposed by the instrument itself resulted in a masking of
the residual pore pressure levels. This was corrected before the second deployment at the
Control Site by replacing the steel baseplate with a more buoyant plywood base. The imposed
weight of the instrument was determined to be equivalent to a head of water about 110 and 54
mm for Lancelot deployments 1 and 2, respectively. These levels correspond to the end of
primary consolidation, as indicated in the long term excess pore pressure decay curves (Figs.
4.4-1 and 4.4-2). The decay curve for the Lancelot 1 deployment indicates substantial
capacity for secondary consolidation {creep settlement), which is typical of sediments
containing high organic contents (Mesri and Castro 1987).

The records for both Lancelot deployments suggest a minor degree of excess pore pressure
resident within the seabed at both the Channel margin and Control site, but the actual level
near the Channel margin is difficult to quantify due to the high compressibility of the organics.
The record for Lancelot 2 indicates a small degree of cyclic movement of pore fluids, probably
as a result of tidal forcing. This has been observed in other studies as well {(Schultheiss 1990}.
Although these effects are detectable, they appear to be relatively insignificant and indicate
that sediment permeabilities are high enough to dissipate small excess pore pressures over a
period of several hours. This was confirmed during ship passage events (see below).

The estimated effective stresses (assuming hydrostatic pore pressure) were calculated to be
4.61 kPa and 5.54 kPa at the depth of the probe tip for the Channel and Control sites,
respectively. The pore pressure parameter ry, is given by Morgenstern and Sangrey (1978) as:

ry=dU/s/y'z

This parameter is used in stability analyses to characterize the influence of pore pressure
during shear. Values of the pore pressure parameter range from O for no excess pore pressure
(fully grain-supported) to 1 (fully pore fluid-supported). Estimates of r,, were made for sites
that had dissipated penetration pore pressures (Table 4.4-1). These values indicate that the
Channel margin is close to failure under natural conditions, whereas the Controf site is
essentially fully stabilized.
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Figure 4.4-1. Pore pressure decay curve for Lancelot 1 deployment at the Channel site
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Figure 4.4-2. Pore pressure decay curve for Lancelot 2 deployment at the Control site
(Station 18).
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Figure 4.4-3. Lancelot results during event of unknown origin (22 July 1993) at the Channel

site.
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Figure 4.4-5. Lancelot results during passage (outgoing) of the M/V Mariner (16 July 1993)

at the Channel site.
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Figure 4.4-8. Lancelot results during passage (outgoing) of the Hubert Tanthier (27 July

1993) at the Control site.
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Figure 4.4-9. Expanded view of Lancelot results during passage (outgoing) of the Hubert
Tanthier (27 July 1993) at the Control site.
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Figure 4.4-12. Calibration records for Lancelot from deployment recovery and data files (22

July 1993).
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Table 4.4-1. Summary of residual excess pore pressures and ry, values
obtained for Lancelot deployments. (0 indicates no instability; 1 indicates
seabed is liquefied).

Deployment Site Core ps (g em~3)  dU (mm) ry
Lancelot 1  Channel GC-13 1.15 40* 0.75%
Lancelot 2  Control GC-25 1.36 12 0.08

*These values may not represent real long-term values (see discussion in Secticn 4.4)
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Lancelot was deployed during two ship passage events (a third event, which also appeared to
be a ship passage, was recorded (Fig. 4.4-3), but its exact cause is unknown). The times of
these events are summarized in Table 4.4-2.

The pressure disturbance from vessel passage was detected initially as a reduction in water
level (trough ahead of the bow wave), followed thereafter by a quiet interval of about 1 min
and a well-defined sequence of high-frequency waves (Figs. 4.4-4 to 4.4-6). This high-
frequency component was concluded to be the ship wake. Its effect was quite dramatic, as
indicated by the higher excess pore pressures generated as compared to the bow wave. This
indicates that the amplitude of waves in the ship wake is the major destabilizing factor along
the Channel margin.

Note that for event four (Fig. 4.4-7), there was very low amplitude or no bow wave. As this
deployment of Lancelot was at the Control site, it can be concluded that the effects of
shipping are negligible away from the Ship Channel. Presumably, these waves break on the
Channel banks and dissipate the majority of their energy there. During event six Excalibur
was deployed in the Channel margin and registered a bow wave that immediately preceded the
wake (Figs. 4.4-14 and 4.4-15), compared to Lancelot 1 which was slightly farther away and
showed a time gap between the bow wave and the wake (Figs. 4.4-3 and 4.4-5). The degree
of stress transfer to the fluid phase was also considerably higher. Apparently, the confines of
the Channel preclude time for seabed restabilization between the long-period bow wave and
the high frequency wake.

4.5 Excalibur Results

A total of 18 Excalibur deployments were made. The results are summarized in Table 4.5-1
and Figures 4.5-1 to 4.5-18. The problem of the long time required for dissipation of
penetration pore pressures became evident in some of the Excalibur deployments. Some
deployments had not achieved full dissipation of pore pressures developed during penetration
of the probe, making a calculation of long term pore pressures and stability impossible.
Deployments at Stations 6 and 11 were influenced by the weight of the instrument, as with
Lancelot, so a lighter plywood base was installed for subsequent deployments. This resulted
in an imposed vertical stress on the seabed equivalent to 12 mm of head which was less than
all but one of the measurements of residual excess pore pressure, Station 36 actually showed
a long term excess pore pressure that was slightly negative, which probably resulted from
shearing during the previous ship passage. This indicates that the instrument effects were
negligible,

Figure 4.5-19 shows residual excess pore pressures for all sites, in comparison with the level
at which liquefaction would have existed, based on estimates of effective vertical stress.
Penetration pore pressures are a local effect, and ambient conditions can be recognized only
after the penetration pressure has dissipated. Therefore, the data on excess pore pressure
were not used to calculate values of ry, for these sites. Instead, the undrained strength
determined from gravity cores was used to empirically estimate maximum excess pore
pressures thai could be generated during penetration. Bennett et al. (1985) concluded that




Table 4.4-2. Known ship movements adjacent to Lancelot and Excalibur.

Time  Instrument
Event No. Vessel Date (AST) Deployed  Test Site
1 M/V Marnper (incoming)  July 15 08:49 Lancelot I  Channel
2 M/V Mariner (outgoing)  July 16 07:50 Lancelot 1  Channel
3 Unknown Vessel (n/a} July22  15:05 Lancelot 2 Control
4  Hubert Tanthier (incoming) July 25 20:26 Lancelot 2 Control
5  Hubert Tanthier (outgoing) July 27 07:40 Lancelot 2 Control
6  Hubert Tanthier (outgoing) July 27 06:40 Excalibur 36  Channel
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Figure 4.4-14. Excalibur resuits during passage (outgoing) of the Hubert Tanthier (27 July
1993) at the Channel site.
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Table 4.5-1. Summary of Excalibur excess pore pressure data and calculated vatues

of effective vertical stress and pore pressure parameter.

Station Depth Py ¥ dUu
Site No. Date Time {m) (g cm‘3) (kN m“3) (m) ry
Control 25 July24 1500 5.59 1.37 3.35 0.042 0.22
Channel 13 July 19 1300 6.72 1.38 3.45 0.773 -
Channel 12 July 19 1700 7.82 1.21 1.78 0.361 -
Channel 17 July20 1200 5.68 1.38 3.45 0.595 -
Channel 36 July27 0900 5.33 1.30 2,66 - 0.02
Pre-Dump 6  July15 1700 NA 1.38 3.45 0.339 -
Pre-Dump 11 July 15 1900 NA 1.38 3.45 0.433 -
Pre-Dump 07 July 16 1830 5.75 1.38 3.45 0.033 0.17
Post-Dump 08  July 19 2000 5.84 1.38 345 1.303 -
Post-Dump 20 July22 1600 4.82 1.38 3.45 1.572 -
Post-Dump 21 July23 1300 5.55 1.32 2.86 0.082 0351
Post-Dump 23 July23 1700 5.18 1.34 3.05 0034 0.02
Post-Dump 24 July23 1900 5.28 1.38 3.45 0.110  0.57
Post-Dump 28 July25 0900 5.59 1.36 3.25 0.016 0.09
Post-Dump 29 July25 1400 593 1.30 2.66 0.648 -
Post-Dump 31 July26 1100 5.40 1.38 3.45 0.012 0.06
Post-Dump 32 July26 1300 5.62 1.34 3.05 0.039 023
Post-Dump 33 July27 1700 4.73 1.53 492 0122 0.44
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Figure 4.5-7. Time series results for Excalibur deployment at Experimental site (Station 7).
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Figure 4.5-17. Time series results for Excalibur deployment at Experimental site ( Station 32).
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Figure 4.5-18. Time series results for Excalibur deployment at Experimental site (Station 33).
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penetration pore pressures could be as high as six times the undrained shear strength in fine-
grained sediments. Christian (1993) confirmed this finding; however, a lower factor is more
appropriate for less plastic sediments. A multiplication factor of 4 adequately predicted pore
pressures in this study. (The maximum penetration pore pressure may have been higher but
not recorded due to the slight dilation behavior within the surficial denser crust.)

Undrained strengths ranged from 2 to 4 kPa (equivalent to 0.2-0.4 m of head), which is
extremely low. Therefore, using a conversion factor of 4, the maximum excess pore pressures
range from 0.8-1.6 m of head. The maximum excess pore pressure was measured at Station
20 to be at a level of 1.57 m of head, which is in agreement with the prediction. As previously
noted, 1t 1s not possible for a sediment deposit to be stable if its excess pore pressure exceeds
the vertical effective stress. Thus deployments at Stations 6, 11, 13, 12, 8, 17, 20 and 29 can
be considered to have been of insufficient duration to determine the long term stability. All
other stations gave a fully dissipated response within the duration of measurement.

Dumping of dredgings appears to have had no long term impact on seabed stability at a depth
of 0.5 m (the depth of the probe) for stations 21, 23, 24, 28, 31, 32, and 33. Excess pore
pressures are shown in excess of the maximum permissible for stability for some stations, but
cannot be concluded to represent actual long term values. It is curious that the higher values
were recorded immediately after disposal, and that after disposal had ceased, conditions
appeared to become stable, as they were before disposal at Station 7.

4.6 Current Velocity and Direction

Current velocities at Station 2 (Fig. 4.6-1), located within the Control site, had a mean
velocity of 0.13 m sec-]. The currents were generally rotary, with a weakly defined ebb and
somewhat better defined flood. The westerly flood 1s more strongly defined than the ebb, and
has a maximum rate of almost 0.5 m sec-!l. Current velocities at Station 5, located just east of
the Experimental disposal site (Fig. 4.6-2), had a mean value of 0.11 m secl, slightly less than
at the Control site. There was little difference between ebb and flood tide current velocities.

Wind velocity during the study penod (obtained from Environment Canada for the Point
Escuminac weather station) ranged from 0 to 56 km hr-1 (Fig. 4.6-3).

5. DISCUSSION

5.1 Sediment Properties

The sediments at all sites examined ranged from very loose to extremely loose organic silty
clays and clayey silts with exceptionally high organic contents, high water content and low
bulk density. These characteristics suggest that they are very susceptible to collapse during
shear. In addition, the high organic contents and lack of consolidation enhance the potential
for remobilization of dredged and deposited sediments through cyclic pore pressure
generation and liquefaction failure during major storms or other loading events.
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Figure 4.6-1. Current velocity and direction at the Control site (Station 2).
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The negative initial penetration pore pressure response from Lancelot and Excalibur
measurements suggested the presence of a thin surficial crust. This was verified in subsequent
analysis of gravity cores, which showed decreasing bulk density with depth over the top 10-15
cm (Section 4.1). Although high organic contents are often indicative of a highly
compressible sediment structure, they may in some cases prevent drainage from within the
consolidating mass, sustaining it in a2 weak condition indefinitely. The presence of an
impermeable organic cap on the sediment column has been reported (Siva and Jordan 1984) as
a possible explanation for a lack of consolidation at depth in other marine sediments.

5.2 Patterns of Erosion

The patterns of erosion determined in this study show a series of trends that help understand
the stability of disposed sediment. These trends are illustrated in Figure 5.2-1 in the form of
the erosion threshold (cohesion) and friction angle. The results are clustered into Control
sites, the navigation channel, the pre-disposal sites and the post-disposal sites. The triplicate
Control experiments (MIR12, MIR13, and MIR14) clearly demonstrate the reproducibility of
results from the Sea Carousel, and the relatively homogeneous seabed, at least on spatial
scales of tens of meters. The seabed sediments exhibit a threshold stress which 1s within the
range of fine-grained marine sediments. The negative friction angle is suggestive of
biostabilization of the sediment surface, leading us to believe that the sediment strength is
derived from adhesion produced by benthic organisms.

The Channel sites show a significant reduction in erosion threshold compared to the Control
sites. The extremely low thresholds encountered during the erosion process is diagnostic of
fluidized gels. The high organic contents of these sediments (the highest of all sites in this
survey) are believed to contribute to the development of the gel state.

The pre-disposal stations at the Experimental disposal site show a range in erosion thresholds
typical of a heterogeneous seabed and may be a result of the region being previously used for
disposal of dredge material. The highest erosion thresholds of the survey were detected
within the Experimental disposal site. This finding confirms results from a similar survey in
the region reported in Brylinsky et al. {1992), wherein disposed material quickly developed a
strength that exceeded the surrounding natural material.

The majority of our study was devoted to monitoring the stability of disposed material within
the Experimental disposal site. An examination of Figure 5.2-1 clearly shows that the
disposed material shows a much greater degree of variability in results than was evident at the
other three locations, This is reflected in both the threshold for erosion as well as in the
friction angles. This result is to be expected given the nature of the material disposed, which
is blocky in form and which retains much of its original character (Fredette et al. 1992).
Despite this heterogeneity of the disposed material, we feel that several interesting trends are
evident in our results. The most important is the rapid development of strength of the surface
of the disposed material. Within the first 12 hrs after disposal, the material possesses a
strength which is about 50 percent that of the original dredged material. However, the
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strength increases rapidly over a period of 60 hrs, at which time it possesses a strength which
exceeds that of the original dredged Channel material. At the same time there is a systematic
decrease in the friction angle. The reason for these apparently-contradictory trends may be
explamed by reference to Figures 4.2.6.1-9 to 4.2.6.1-11 (MIR18, MIR19, and MIR20).
These figures illustrate Sea Carousel results of the spoils approximately 60 hrs after disposal.
Notice the rapid decrease in the erosion threshold with depth in the sediment. This is typical
of the effects of colonization by benthic microflora as described by Paterson (1989).  Also,
work undertaken by T. Sutherland (Dalhousie University) has shown that this trend of surface
strengthening may be a resuit of microphytobenthos production. The sediment strength is,
however, restricted to the surface 2 mm of sediment only. Immediately below this "skin" the
strength of the disposed material remained extremely low, and was even in a fluidized state
(Fig. 4.2.6.1-9). We conclude, therefore, that disposed material is quick to develop a surface
strength due to biological colonization of its surface. However, if this surface layer is
damaged or broken, the underlying material would be easily mobilized.

5.3 SSC Concentrations and Development of Fluid Muds
5.3.1 Natural

The concentration of suspended material was observed at two sites: at the edge of the
navigation channel; and at the edge of the Experimental disposal site. At the first site, there is
clear evidence for tidal resuspension of bottom sediment during the flooding tide. This
accounts for a small increase in SSC only, and is largely restricted to the lower 0.5 m of the
water column. The ebbing tide was less effective in the resuspension of bed material. The
most significant resuspension events were associated with periods of rough seas. Wave
resuspension was particularly evident at Station 38 near the Experimental disposal site. On 25
July 1993 (Figs. 4.3.2-13 to 4.3.2-16), we see the most significant turbid events to be detected
in the survey. These persist for periods of up to 6 hrs and occur at intervals over a 24 hr
period of rough weather. The rapid onset of the turbid events suggests that the material was
not resuspended in situ, but was advected in from a nearby source. Examination of current
velocities and directions (Fig. 4.6-2) at the time of these events suggests that this source may
be the freshly deposited material at Disposal Site B. However, these events also coincided
with a period of high tides, strong precipitation and low salinity suggesting they may have
resulted from sediments carried into the Bay by the river.

The synthesis of the settling experiments from each of the Sea Carousel deployments 1s shown
in Figure 5.3.1-1. The irregular results of the near-surface OBS in the Carousel indicate that
surface effects contribute to the signal and that it cannot be used with confidence to indicate
fluid mud potential. The near-bed OBS, by contrast, produces consistent resulis in the
Control examples (MIR12, MIR13, and MIR14). Omissions in this plot are due to burnal of
the sensor. Nevertheless, we see that the pre-disposal sites produce a rapid settling rate (k <
-0.0004), which is diagnostic of a low fluid mud potential. The post-disposat Stations show a
trend of increasing settling rate with time. The low initial setthing rates we associate with
disaggregated, remoulded material. The rapidly settling material that characterizes MIR18,
MIR 19, and MIR20 are the highest detected in the survey, and are diagnostic of an extremely
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low potential for fluid mud generation. This, we presume, is due to the pelletization, and
aggregation of material brought about by biological activity; the same process contributes to
sediment biostabilization.

Previous studies have demonstrated the loose state of Miramichi sediments (Brylinsky et al.
1992) which, together with the results of the present study, suggests that there is a potentiai
for widespread instability during major natural loading events, such as autumn storms. Short-
term loading events may also lead to destabilization of the seabed to some depth. Wave
loading 1s commonly thought to result in excess pore pressure development through cyclic
shear reversal within the seabed, progressively weakening the seabed. In actual fact, only
certain wave amplitudes and frequencies will lead to shearing and excess pore pressure
buildup within the seabed, as wave energy attenuates exponentially with increasing water
depth and 1s absorbed by intergranular friction within the bed. Also, water depths limit the
period of the longest storm waves that can develop, so an evaluation of the effects of wave
loading requires a more complete consideration of the wave climate along with the local
geometric setting, as well as the sediment shear response.

The results of Lancelot measurements indicate that the Channel margin may be close to failure
under natural conditions, whereas the Control site is essentially fully stabilized. It is probable
that the high sediment organic contents inhibit the expulsion of pore water along the Channel
margin, resulting in a long term high susceptibility to liquefaction. The effect of repeated ship
passage (discussed below) may partially account for the lack of stability along the Channel
margins.

5.3.2 Ship Passage Effects

At the time of the passage of the M/V Mariner SOBS was at location at Station 1, near the
Channel margin. The effect of the ship entering the Channel can be clearly seen in Figure
5.3.2-1. All OBS's show a rapid increase in SSC which is interpreted to be local resuspension
from the bow wave of the ship. The turbid layer so generated has a peak concentration of
circa 2000 mg-1, and is largely evident to a height of approximately 1 m above the bed. The
highest SSC is coincident with the bow wave, and drops rapidly with time in an exponentiaily
decaying fashion, similar to the Sea Carousel settling experiments. During the concentration
decay period a second pulse occurs evident as a secondary increase in SSC. This pulse occurs
within 2 min of the bow wave, and 1s explained as local resuspension from the turbulent wake .
region caused by the ship’s propellers. The turbidity associated with this turbulent wake
region is sustained for 1 to 2 hrs. It appears oscillatory in OBS3 of Figure 5.3.2-1. This we
presume is due to tidal advection of the turbid plume left behind after the ship's passage.

The effects of the outgoing ship's passage on day 197 is clearly seen in Figure 5.3.2-2. The
signature of turbidity detected by the OBS sensors is similar to that seen in Figure 5.3.2-1,
although the magnitude of the event was lower. We see a rapid onset of a highly turbid event
that 1s associated with the passage of the ship's bow wave. The SSC shows a decrease with
height above the bed from a maximum of 1000 mg-!. It is evident even in the highest sensor
(1.8 m above the seabed). This peak is followed by a lesser, but nevertheless distinct,
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secondary turbid event some 4 min later. The secondary plume we associate again with the
turbulent wake region generated by the ship's propellers. The turbid wake region again takes
approximately 1 hr to dissipate. The lower magnitude of the second event we attribute to the
lower displacement of the outgoing vessel, which had unloaded its cargo. These two turbid
events dominate the entire record of SOBS1. It is greater than tidal resuspension or wave
resuspension.

Lancelot and Excalibur results indicated that ship passage caused a rapid cyclic loading that
was closely coupled to excess porewater pressure cycling, indicating that shear stress reversal
was occurring and that the seabed was being sheared, at least to the depth of the probe
(0.55m). This process closely simulates what would happen during a major storm. It is not
possible at this time to state whether or not ship passage effects are more destabilizing than
storm waves since wave spectra measurements were not made during this study.

Several instances of the onset of cyclic liquefaction failure were observed adjacent to the Ship
Channel (Figs. 4.4-4, 4.4-6, 4.4-9, 4 4-14 and 4.4-15). Sediments there and over the entire
study area in general, are very close to the liquefaction threshold (or failure envelope), due to
a lack of consolidation. This loose condition is probably a result of the high organic content
of the sediments, which may play a role in preventing egress of porewater during wave
loading, and to a lesser degree, during tidal loading, as indicated by the sinusoidal excess
porewater pressure records recorded for the ship passages. A reduction in water depth
(during passage of a wave trough or during an ebbing tide) is manifested by a coincident
increase in excess pore pressure beneath the seabed, indicating that there is a time lag for
equalization. This indicates that the stress state within the seabed is cycling in response to
loading, and on one occasion, nearly resulted in liquefaction failure beneath the instrument.

The major excess pore pressure events recorded by Lancelot and Excalibur occurred in each
case at exactly the time that a large vessel passed the deployment site. Shearing of the seabed
during the incoming passage had evidently weakened the sediment (Fig. 4.4-4), as indicated by
the onset of excess pore pressure generation during the outgoing passage the following day
(Fig. 4.4-6). The bow wave on the incoming passage did not result in an excess pore pressure
response; energy was fully absorbed by internal shearing and/or compression in the pore gas
phase. The degree of shear stress transferred to the pore water in percent is given in Table
5.3.2-1, indicating that there may have been some free gas within the sediment. Event six
resulted in the greatest degree of liquefaction under the action of the wake, as indicated by the.
60 percent excess pore pressure response.

It is noteworthy that flowslide mobility is controlled by the geometry of the seabed, by the
potential for excess porewater pressure generation during collapse, and by the viscous drag
resistance offered by the overlying water column. They have been observed on very flat
slopes, below 1 degree, in loose sandy sediment. Furthermore, there is minimal data on
flowslides in material as rich in organics as in the Miramichi Bay which are much weaker than
sediment deposits that have failed in reported case histories. Unfortunately, it is uniikely that
flattening the side slopes on the Ship Channel would have any significant mitigating effect on
channel bank slumping and infilling. Channel margin stability could be enhanced, however, if
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Table 5.3.2-1. Excess pore pressures arising from cyclic wave loading
during ship passage events.

Max Ht. Bow Peak Ampl. Max Ht. Wake Peak Ampl. dUMt  4U/Ht

Event No. Wave (mm) dU {mm) Wave (mm) JU (mm) Bow  Wake
1 170 2 160 28 1.2% 18%
2 140 4 130 23 2.9% 18%
3 " - - - - -
4 0 0 80 20 - 25%
5 50 5 150 40 10% 21%

6 430 55 250 150 13% 60%
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ship passages were conducted at slower speeds, particularly in sections known to be prone to
fatlure.

5.3.3 Dredging Effects

Dredging of the navigation channel took place within Reach 22 during deployment of SOBS1.
The dredging operation was at times close (within 100 m) to the location of SOBS1, We
observed reflectors on the ship's echo sounder while undertaking Sea Carousel deployments in
the Channel that were obviously associated with the dredging operation. Even so, no
evidence of the dredging operation was observed at SOBS1. We conclude from this that,
although increases in turbidity are evident in the Channel, none of this turbid water spills over
the Channel margins. Consequently, all effects of dredging the Channel appear to be
contained within the Channel.

One immediate impact of dredging is undoubtedly the oversteepening of ship channel banks,
which would fail back to a flatter slope, over a short period of time. These slumps would be
of local extent, but would gradually infill the Channel, making periodic dredging a necessity.
The preceding section discussed the problem presented in terms of the ambient levels of
excess pore pressure and the loose nature of the sediments. It is evident that it will not be
possible to avoid continuing to dredge to maintain adequate draft for vessel traffic.
Furthermore, any attempt to flatten the side slopes would have minimal impact, as the degree
of flattening required is excessively expensive.

The sediment exposed at the base of the cut is likely somewhat more stable than the overlying
material, due to the effects of self-weight consolidation. However, the actual activity of
dredging itself creates localized pockets of resuspended material, which returns to a stable
condition very slowly, after it settles out of the water column. As no measurements were
made in freshly-dredged locations, no conclusions can be made regarding the characteristics of
redeposited material at the dredge site, or of the stiffer substrate that becomes exposed after
dredging.

5.3.4 Dumping Effects

The majority of disposal at the Experimental disposal site took place between 20-23 July 1993
(Julian Days 201-204). SOBS during this period of time was located adjacent to the
Experimental disposal site (Station 38). SOBS output for this period of time is presented in
Figures 4.3.2-1 to 4.3.2-19. No clear evidence for increased turbidity caused by disposal can
be seen. Several turbid events were detected, but similar events were also seen during periods
when no disposal was taking place. '

Excalibur measurements suggest that disposal has no effect on the long term stability of the
seabed (Fig. 4.5-1). Pore pressures within recently deposited spoils, as well as within the
underlying seabed, quickly (within days) returned to ambient levels. The weight of sediment
added to the deposit is initially taken up as a rise in the porewater pressure above hydrostatic
levels at depth, which then dissipate with time to the seabed. In the case of disposal of
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dredged spoils, the imposition of stress and development of excess porewater pressure is
sudden, which may be manifested through a deep-seated failure and the creation of flmid-
expulsion features on the seabed (pockmarks or craters). With time, this condition disappears
and the seabed returns to equilibrium conditions. During this period of stabilization, the
disposed spoils, and perhaps the underlying seabed, exists in a weakened state and,
consequently, there is a higher potential for resuspension under surface wave events.

6. CONCLUSIONS

(1)

(2)

(3)

(4)

(5)

(6)

(7)

The sediments at all sites examined ranged from very loose to extremely loose organic
silty clays and clayey silts with exceptionally high organic contents, high water content
and low bulk density. These characteristics suggest that they are very susceptible to
collapse when subjected to shear forces.

The seabed at all sites, and particularly the Channel, is poorly consolidated and very close
to liquefaction. The poor consolidation is a result of the high organic contents of the
sediments.

Erosion thresholds at the Channel sites were considerably lower than the Control site and
were diagnostic of fluidized gels. The high organic contents of the Channel sediments
(the highest of all sites in this survey) are believed to contribute to the development of the
gel state.

The strength of spoils deposited at the Experimental disposal-site increased rapidly.
After 60 hrs sediment strength exceeded that of the original dredged Channel material.
This however, was restricted to the surface 2 mm of sediment. Immediately below this
depth the strength of the disposed material remained extremely low, and was even in a
fluidized state.

Excalibur measurements suggest that disposal has minimal impact on the long term
stability of the original seabed. Although in situ pore pressures initially increased in
sediments below spoil deposits, they quickly (within days) returned to ambient levels.

Sediment settling rate measurements showed that the sediments encountered are :
generally not of a nature that would lead to hindered settling and the development of fluid
mud layers. Continuous measurement of SSC concentrations and video observations by
both Sea Carousel and SOBS did not detect the presence of fluid mud layers during the
study period. High SSC (>2000 mg'l), lasting for periods of hours were, however,
observed on two occasions during the SOBS deployment near the Experimental disposal
site. The origin of the sediments causing these events is unclear.

Ship passage produced elevated SSC concentrations (> 2000 mg"l) at sites located
outside of the Channel, but this lasted for only a short period (<15 min).
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(8) Ship passage caused a rapid cyclic loading that was closely coupled to excess porewater
pressure cycling, indicating that the seabed was being sheared. The ship wake (as
opposed to the bow wave) is a major destabilizing force along the Channel margin. The
effects of ship speed and frequency of ship passage may be a major factor accounting for
reduced stability along portions of the Channel margins.

(9) The source of sediment that results in infilling of the navigation channel within the Bay is
unclear, Ifinfilling is largely a result of slumping along Channel margins, as opposed to
deposition of sediment carried into the Bay by the river, Channel margin stability could be
enhanced if ship passages were conducted at lower speeds, particularly in sections known
to be prone to failure.

7. RECOMMENDATIONS FOR FUTURE STUDIES

Previous studies (Brylinsky et al. 1992) of sediment stability at Disposal Site B indicated little
difference between sediments at a spoils mound one year after deposition and the sediments at
a natural undisturbed Control site in the Miramichi Inner Bay. The present study has shown
that recently deposited spoils are initially unstable, but the surface strength quickly increases
to exceed that of the original dredge materials. This stability, however, was still less than at
the Control site, and was limited to the surface 2 mm of sediment,

In order to obtain a more comprehensive data set on the effects of wind and tidal forcing on
resuspension process at Disposal Site B, it is recommended that SOBS and Lancelot, together
with a current meter and wave rider, be deployed during any further dredging progamme, and
for a period of three to four months thereafter (e.g., until ice-up). This would provide a long
term data set that could be analyzed to determine the frequency and strength of forcing factors
associated with natural and dredging related resuspension events. This information should
also provide appropriate data for development of resuspension algorithms and validation data
for numerical models.

Present information suggests that dredged spoils from the Channel area of the Miramichi Inner
Bay do not consolidate readily, possibly because of the low gravitational stress levels resulting
from the high organic content, and that this inhibits development of long-term sediment
stability. Frequent (bimonthly or semi-annual} high quality bathymetric surveys of spoils at
Disposal Site B, together with information on changes in bulk density obtained from core
sample measurements, should provide data on the rate and degree of consolidation of spoils
and could be used to determine if spoils remain where they are originally deposited.

Studies should be carried out to determine the relative contributions of channel margin
slumping and river-borne sediments toward infilling of the navigation channel within the Bay.
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If channel slumping is found to be a major factor, policy regarding the velocity and frequency
of ship passage should be reviewed with the aim of developing guidelines that may reduce the
amount and frequency of dredging activities.
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9. APPENDICES




220

APPENDIX A

Cruise Log
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APPENDIX B

UTM Coordinates For Station Locations
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APPENDIX C

Results of Analyses of Sediment Properties
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MIRAMICHI ESTUARY STUDY 1993

CORE BULK DENSITY & WATER CONTENT

CONTROL SITE
CORE  DEPTH Vit Mt Md Mw r Bd w
# cm cm3 d g g ppt g/em3 %
8 12 9.723 13.79 6.61 7.18 25.0 1.42 108.62
34 9.723 12.49 4.58 7.9 25.0 1.28 172.71
56 9.723 13.42 6.06 7.36 25.0 1.38 121.45
7 10 9.723 14.14 6.93 7.21 250 1.45 104.04
34 9,723 13.38 56 7.78 25.0 1.38 138.93
72 9.723 13.42 5.68 7.74 25.0 1.38 136.27
25 12 9.723 12.46 457 7.89 25.0 1.28 172.65
50 9.723 13.27 5.82 7.75 25.5 1.36 140.40
90 9.723 14.24 7.25 6.99 235.5 1.46 96.41
26 8 9.723 13.6 6.19 7.41 25.0 1.40 119.71
40 9.723 13.22 565 7.57 25.0 1.36 133.98
70 9.723 14.07 7.03 7.04 25.0 1.45 100.14
27 8 9.723 12.58 4.96 7.62 250 1.29 153.63
40 9.728 12.99 5.36 7.63 25.0 1.34 142.35

70 9.723 1415 6.86 7.29 25.0 1.46 106.27




CORE
#

12

13

14

15

36

MIRAMICH! ESTUARY STUDY 1993

CORE BULK DENSITY & WATER CONTENT

CHANNEL SITE
DEPTH Vi

cm cma3
20 9.723
58 9.723
82 9.723
10 9,723
40 9.723
60 9.723
10 9,723
30 9723
60 Q723

4 9.723
20 9.723
40 9.723

8 9.723
20 9.723
50 9.723

Mt

11.63
11.75
14.28

11.88
11.15
13.2

12.42
11.72
14.05

11.86
12.61
16.13

12.75
13.08
12.66

Md

3.12
3.74
7.63

3.53
3.31
5.64

3.96
5.48
6.98

3.5
4.51
7.46

5.03
5.68
4.47

Mw

8.51
8.01
6.65

8.35
7.84
7.56

8.46
6.24
7.07

8.36
8.1
8.67

7.72
7.4
8.19

ppt

25.0
25.0
25.0

25.0
25.5
26.5

25.0
25.0
25.0

25.0
25.0
25.0

25.0
25.0
25.0

Bd
g/cm3

1.20
1.21
1.47

1.22
1.15
1.36

1.28
1.21
1.45

1.22
1.30
1.66

1.31
1.35
1.30

235

%

272,76
214.17
87.16

236.54
236.86
134.04

213.64
113.87
101.29

238.86
179.60
116.22

153.48
130.28
183.22
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MIRAMICHI ESTUARY STUDY 1993

CORE BULK DENSITY & WATER CONTENT

EXPERIMENTAL PRE-DUMP SITE

CORE DEPTH Vit Mt Md Mw r Bd W
# cm cm3 g g g ppt g/cm3 Yo
9 4 9.723 16.46 12 4.48 25.0 1.69 37.17
24 9.723 13.14 5.53 7.61 25.0 1.35 137.61
60 9.723 13.13 5.43 7.7 25.0 1.35 141.80
10 8 9.723 13.99 715 6.84 25.0 1.44 95.66
22 9.723 12.58 5 7.58 25.0 1.29 151.60

40 9.723 12.67 4.9 7.77 25.0 1.30 158.57
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MIRAMICHI ESTUARY STUDY 1993

CORE BULK DENSITY & WATER CONTENT

EXPERIMENTAL POST-DUMP SITE

CORE DEPTH Vi Mt Md Mw r Bd W
# cm cm3 g g g ppt g/cm3 Yo

8 8 9.723 15.71 9.61 6.1 250 1.62 63.48
32 9.723 12.66 4.86 7.8 25.0 1.30 160.49
62 9,723 13.37 612 7.25 25.0 1.38 118.46
20 8 9,723 12.63 5.06 7.57 25.0 1.30 149.60
30 9723 15.49 9 6.49 25.0 1.59 72.11
70 9.723 13.18 5.85 7.33 25.0 1.36 125.30

21A 8 9.723 15.25 8.44 6.81 25.0 1.57 80.69
50 9.723 12.86 5.21 7.65 250 1.32 146.83
70 9.723 13.93 6.78 7.15 25.0 1.43 105.46

218 10 9.723 14.43 7.58 6.85 25.0 1.48 90.37
40 9.723 1414 7.29 6.85 25.0 1.45 93.96
860 9723 12.77 4,98 7.79 25.0 1.31 156.43

22 14 9,723 13.15 568 7.47 250 1.35 131.51
44 9.723 13.4 6.08 7.32 25.0 1.38 120.39
56 9723 12.52 4.6 7.92 25.0 1.29 17217

23 6 9.723 14,73 7.96 6.77 25.0 1.51 85.05
40 9.723 12.44 414 8.3 25.0 1.28 200.48
60 9723 13.09 5.43 7.66 25.0 1.35 141.07
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MIRAMICHI ESTUARY STUDY 1993

CORE BULK DENSITY & WATER CONTENT

EXPERIMENTAL POST-DUMP SITE

CORE DEPTH Vi Mt Md Mw r Bd W
# cm cm3 g g g ppt g/cm3 %
29 10 9.723 13.18 576 7.42 25.0 1.36 128.82
40 9.723 12.56 4.81 7.75 25.0 1.29 161.12
70 9.723 12.75 5.05% 7.7 25.0 1.31 152.48
30 12 9.723 13.17 572 7.45 25.0 1.35 130.24
30 9.723 12.5 4.54 7.96 25.0 1.29 175.33
70 9.723 13.25 5.63 7.62 25.0 1.36 135.35
32 10 9.723 12.78 517 7.61 25.0 1.31 147.20
50 9723 13 5.36 7.64 25.0 1.34 142.54
70 9.723 14.16 6.83 7.33 25.0 1.48 107.32
33 10 9.723 14,65 8.44 6.21 25.0 1.51 73.58
20 9,723 16.98 11.88 51 25.0 1.75 42,93
30 9.723 14.86 8.35 6.51 25.0 1.53 77.96
34 10 9.723 13.63 6.38 7.25 25.0 1.40 113.64
40 9.723 13.27 5.67 7.6 25.0 1.36 134.04

60 9.723 12.34 4.53 7.81 25.0 1.27 172.41




CORE #
&
DEPTH
cm
13-04
13-18
13-24
13-32
13-46

13-54

13-66

MIRAMICHI ESTUARY STUDY 1993

CORE GRAIN SIZE & ORGANICS

CHANNEL SITE

TOTAL
SAMPLE
WT

g

16.98

18.42

12.89

18.31

22.85

21.44

19.91

GRAVEL
WT

g

0.00

0.00

0.04

0.01

0.01

0.00

0.00

SAND
WT

9

0.31

1.44

0.08

2.06

3.08

3.15

2.08

MUD

1416

14.34

10.47

13.58

17.10

15.94

15.36

239

GRAIN ORGANIC ORGANIC

SIZE

MEAN

mm

0.00256

0.00357

0.00224

0.00424

0.00498

0.00515

0.00458

WT
g

2.51

2.64

2.30

2.66

2.66

2.35

2.47

%

14.78

14.33

17.84

14.53

11.64

10.96

12.41




CORE #

&

DEPTH

cm

25-07

25-18

25-30

25-40

25-50

25-65

25-80

25-90

MIBAMICH! ESTUARY STUDY 1993

CORE GRAIN SIZE & ORGANICS

CONTROL SITE

TOTAL
SAMPLE
WT

g

20.51

19.71

17.23

22.29

30.33

21.39

33.13

28.42

GRAVEL
WT

g

0.01

0.01

0.00

0.00

0.00

0.00

0.23

0.01

SAND
WT

g

1.49

1.21

0.70

2.40

3.9

3.41

13.85

9.24

MUD

16.57

15.98

14.49

16.90

23.53

15.23

16.20

16.31

GRAIN

SIZE

MEAN

mm

0.00443

0.00410

0.00377

0.00588

0.00576

0.00749

£.0240

0.0121

240

ORGANIC
WT
g
2.44 11.90
2.51 12.73

2.04 11.84

2.99 13.41
2.89 9.53
2.75 12.86
2.85 8.60

2.86 10.06




CORE #

&

DEPTH

cm

28-06

28-15

28-28

28-40

28-50

28-60

28-80

MIRAMICHI ESTUARY STUDY 1993

CORE GRAIN SIZE & ORGANICS

EXPERIMENTAL POST-DUMP SITE

TOTAL
SAMPLE
WT

g

18.95

23.60

20.33

20.70

25,59

19.45

25.17

GRAVEL
WT

g

0.03

0.00

0.00

0.00

0.46

0.00

0.00

SAND
WT

g

2.42

1.07

1.08

2.14

5.57

1.99

475

MUD

14.44

19.86

17.00

16.17

16.30

15.36

17.86

GRAIN

SIZE

MEAN

mm

0.00609

0.00481

0.00410

0.00523

0.0125

0.00515

0.00820

ORGANIC
WT

g

2.06

2.67

2.25

2.39

3.26

2.10

2.56

10.87

11.31

11.07

11.55

12.74

10.80

1017

241




CORE #

DEPTH

cm

13-04

13-18

13-24

13-32

13-46

13-54

13-66

MIRAMICHI ESTUARY STUDY 1993

CORE GRAVEL-SAND-SILT-MUD RATIOS

CHANNEL SITE

GRAVEL
%

0.00

0.00

0.38

0.04

0.06

0.00

0.00

SAND
%

2.15

8.48

0.76

12.25

14.43

15.24

11.21

SILT
%

42.00

42.34

39.86

41.76

42.21

42.95

45.80

CLAY
%

55.86

4917

59.01

45,95

43.30

41.82

42.99

MUD
%

g7.85

91.52

98.87

87.71

85.50

84.76

88.79

242

MEAN GRAIN
SIZE
mm

0.00256

0.00357

0.00224

0.00424

0.00498

0.00515

0.00458




CORE #

DEPTH

cm

25-07

25-18

25-30

25-40

25-50

25-65

25-80

25-90

MIRAMICHI ESTUARY STUDY 1993

CORE GRAVEL-SAND-SILT-MUD RATIOS

CONTROL SITE

GRAVEL
%

0.07

0.06

0.00

0.00

0.00

0.00

0.75

0.04

SAND
%

7.50

6.33

4.11

11.30

12.55

16.19

44.04

33.78

SILT
%

49.26

48.19

51.05

50.41

49.78

50.64

32.70

37.91

CLAY
%

43.17

45.42

44.84

38.29

37.66

33.17

22.51

28.27

MUD
%

92.43

83.61

95.89

88.70

87.45

83.81

55.21

66.18

243

MEAN GRAIN
SIZE
mm

0.00443

0.00410

0.00377

0.00588

0.00576

0.00749

0.0240

0.0121




CORE #

DEPTH

cm

28-06

28-15

28-28

28-40

28-50

28-60

28-80

MIRAMICHI ESTUARY STUDY 1983

CORE GRAVEL-SAND-SILT-MUD RATIOS

EXPERIMENTAL POST-DUMP SITE

GRAVEL
%

0.21

0.00

0.00

0.00

2.04

0.00

0.02

SAND
%

13.38

4.25

5.34

10.67

23.72

10.11

18.89

SILT
%

49.08

56.06

52.24

50.28

43.39

50.35

48.89

CLAY
%

37.34

39.69

42.42

39.05

30.85

39.54

32.20

MUD
%

86.41

9575

94.66

89.33

74.23

89.89

81.09

244

MEAN GRAIN
SIZE
mm

0.006089

0.00481

0.00410

0.00523

0.0125

0.00515

0.00820
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VAN VEEN GRAIN SIZE & ORGANICS

CONTROL SITE
STATION TOTAL SAMPLE GRAVEL SAND MUD GRAIN ORGANIC ORGANIC
# WT WT WT WT SIZE WT Yo
g g g g MEAN )
mm
6 58.10 0.08 7.57 48.32 0.00588 312 528
25 57.90 0.02 4.64 48.87 0.00396 3.37 5.82
26 53.50 0.02 3.52 47.04 0.00424 292 5.46

27 52.10 0.02 534 44.27 0.00443 2.47 4.74




MIRAMICHI ESTUARY STUDY 1993

VAN VEEN GRAIN SIZE & ORGANICS

CHANNEL SITE

STATION TOTAL SAMPLE GRAVEL SAND

# WT WT WT
g g g
12 37.41 0.00 2.35
13 21.81 0.00 0.70
14 25.09 0.26 3.34
15 49.34 1.32 16.47

MUD

32.37

17.19

17.68

27.04

GRAIN
SIZE
MEAN
mm
0.00340
0.00319

0.00685

0.0166

246

ORGANIC ORGANIC

WT
g

2.69

3.92

3.81

4.51

Yo

7.19

17.97

1519

9.14




MIRAMICHI ESTUARY STUDY 1983

VAN VEEN GRAIN SIZE & ORGANICS

EXPERIMENTAL PRE-DUMP SITE

STATION TOTAL SAMPLE GRAVEL SAND

# WT WT WT
9 g g
9 80.52 0.95 37.01

10 46.74 0.00 3.68

MUD

38.68

39.12

GRAIN
SiZE
MEAN
mm

0.0242

0.00446

247

ORGANIC ORGANIC

WT %
g

3.98 4,54

3.94 8.43
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VAN VEEN GRAIN SIZE & ORGANICS

EXPERIMENTAL POST-DUMP SITE

STATION  TOTAL SAMPLE GRAVEL  SAND MUD GRAIN  ORGANIC ORGANIC
# WT WT WT WT SIZE wT %
g g g g MEAN g
mm

8 68.30 0.10 8.72 56.56 0.00537 2.92 4.28
20 83.50 0.11 2284 58.36 0.00897 219 2.62
21 74.60 0.04 16.91 53.29 0.00770 436 5.84
22 86.10 0.36 26.12 54.85 0.0118 477 5.54
23 86.30 0.09 21.86 60.21 0.00975 414 4.80
28 67.80 0.06 16.55 47.75 0.00942 3.44 5.07
29 73.40 0.05 19.33 49.37 0.00955 465 6.34
30 59.10 0.15 12.45 43.36 0.00803 3.14 5.31
32 60.50 0.80 13.54 41.81 0.00975 4.35 7.19
33 83.60 0.06 19.17 59.65 0.00873 472 5.65

34 104.70 21.92 33.13 47.15 0.0544 2.50 239
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VAN VEEN GRAIN SIZE & ORGANICS

STATION TOTAL SAMPLE GRAVEL  SAND MUD GRAIN  ORGANIC ORGANIC
# WT WT WT WT SIZE WT %
g g g g MEAN 9
mm

CONTROL SITE

6 59.10 0.09 7.57 48,32 0.00588 3.12 5.28
25 57.90 0.02 4.64 49.87 0.00396 3.37 5.82
26 53.50 0.02 3.52 47.04 0.00424 2.92 5.46
27 52.10 0.02 5.34 4427 0.00443 2.47 4,74
CHANNEL SITE
12 37.41 0.00 2.35 32.37 0.00340 2.69 7148
13 21.81 0.00 0.70 17.19 0.00319 3.92 17.97
14 25.09 0.26 3.34 17.68 0.00685 3.81 15.19
15 49.34 1.32 16.47 27.04 0.0166 4.51 9.14

EXPERIMENTAL PRE-DUMP SITE /

8 80.52 0.85 37.01 38.58 0.0242 3.98 4,94
10 46.74 0.00 3.68 39.12 0.00446 3.94 8.43

EXPERIMENTAL POST-DUMP SITE

8 68.30 0.10 8.72 56.56 0.00537 2.92 - 4.28
20 83.50 0.11 22.84 58.36 0.00897 219 2.62
21 74.60 0.04 16.91 53.29 0.00770 4.36 5.84
22 86.10 0.36 26.12 54.85 0.0118 477 5.54
23 86.30 0.09 21.86 60.21 0.00975 414 4.80
28 67.80 0.06 16.55 47.75 0.00942 3.44 5.07
29 73.40 0.05 19.33 49.37 0.00955 4.65 6.34
30 59.10 0.15 12.45 43.36 0.00803 3.14 5.31
32 €0.50 0.80 13.54 41.81 0.00975 4,35 719
33 83.60 0.06 19.17 59.65 0.00873 4.72 5.65

34 104.70 21.92 33.183 4715 0.0544 2.50 2.38
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VAN VEEN GRAVEL-SAND-SILT-CLAY RATIOS

CONTROL SITE
STATION GRAVEL SAND SILT CLAY MUD GRAJN.;SIZE
# %o Y % % % MEAN
mm
6 0.16 12.82 48.10 38.92 87.02 0.00588
25 0.04 7.85 47.12 45.00 92.12 0.00396
26 0.04 6.30 49.46 44 .21 93.66 0.00424

27 0.04 10.00 46.76 43.19 89.96 0.00443
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VAN VEEN GRAVEL-SAND-SILT-CLAY RATIOS

CHANNEL SITE

STATION GRAVEL SAND SILT CLAY MUD GRAIN SIZE
# % Yo % Yo % MEAN
mm
12 0.00 6.33 44 .22 49.44 93.67 0.00340
13 0.00 3.37 47 .47 49.16 96.63 0.0031¢
14 1.22 15.14 45.04 38.60 83.64 0.00685

15 2.95 35.77 31.70 29.59 61.28 0.0166




MIRAMICHI ESTUARY STUDY 1993

VAN VEEN GRAVEL-SAND-SILT-CLAY RATIOS

EXPERIMENTAL PRE-DUMP SITE

STATION GRAVEL SAND SILT CLAY
# ) % % %
9 1.24 47.57 28.97 22.22

10 0.00 7.94 48.82 43.24

MUD
%

5719

92.06

252

GRAIN SIZE
MEAN
mm

0.0242

0.00446




STATION
#

20

21

22

23

28

29

30

32

33

34

MIRAMICH] ESTUARY STUDY 1283

VAN VEEN GRAVEL-SAND-SILT-CLAY RATIOS

EXPERIMENTAL POST-DUMP SITE

GRAVEL
%

0.15

0.14

0.06

0.44

0.11

0.09

0.07

0.27

1.42

0.08

21.45

SAND
%

12.54

26.28

22.36

30,30

25.02

24.47

26.77

21.24

22.50

22.69

31.97

SILT
%

4479

39.06

41.35

39.38

42.01

43.88

41.12

43.59

43.74

44.45

23.04

CLAY
%

42.52

34.53

36.23

29.87

32.85

31.55

32.03

34.90

32.33

32.79

23.53

MUD
%

87.31

73.59

77.58

69.26

74.87

75.43

73.16

78.49

76.07

77.24

46.58

GRAIN SIZE
MEAN
mm
0.00537
0.00897
0.00770
0.0118
0.00975
0.00942
0.00955
0.00803
0.00975
0.00873

0.0544

253
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VAN VEEN GRAVEL-SAND-SILT-CLAY RATIOS

STATION GRAVEL SAND SILT CLAY MUD  GRAIN SIZE
# % % % % % MEAN
mm
CONTROL SITE
6 0.16 12.82 48.10 38,92 87.02 0.00588
25 0.04 7.85 47.12 45.00 92.12 0.00396
26 0.04 6.30 49.46 44,21 93.66 0.00424
27 0.04 10.00 46.76 43.19 89.96 0.00443

CHANNEL SITE

12 0.00 6.33 4422 49.44 93.67 0.00340
13 0.00 3.37 47 .47 49.16 96.63 0.00319
14 1.22 15.14 45.04 38.60 83.64 0.00685
15 2.95 35.77 31.70 29.59 61.28 0.0166

EXPERIMENTAL PRE-DUMP SITE

9 1.24 47.57 28.97 22.22 57.19 0.0242
10 0.00 7.94 48.82 43.24 92.06 0.00446

EXPERIMENTAL POST-DUMP SITE

8 0.15 12.54 4479 42.52 87.31 0.00537
20 0.14 26.28 39.06 34.53 73.59 0.00887
21 0.06 22.36 41.35 36.23 17.58 0.00770
22 0.44 30.30 39.38 29.87 69.26 0.0118
23 0.11 25.02 42.01 32.85 74.87 0.00975
28 0.08 24.47 43.88 31.55 75.43 0.00942
28 0.07 26.77 4112 32.03 73.16 0.00855
30 0.27 21.24 43.59 34.90 78.49 0.00803
32 1.42 22.50 43.74 32.33 76.07 0.00975
33 0.08 22.69 44.45 32.79 77.24 0.00873

34 21.45 31.97 23.04 23.53 46.58 0.0544
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1993 GRAVITY CORE ANALYSES

MIRAMICH]

CORE 7
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1993 GRAVITY CORE ANALYSES

MIRAMICHI
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1993 GRAVITY CORE ANALYSES

MIRAMICHI
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1893 GRAVITY CORE ANALYSES

MIRAMICHI
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 12
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1993 GRAVITY CORE ANALYSES

MIRAMICHI
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1993 GRAVITY CORE ANALYSES

MIRAMICHI
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MIRAMICH! 1993 GRAVITY CORE ANALYSES

CORE 21A
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 218B

P (g/cmi) MS (cgs)
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1993 GRAVITY CORE ANALYSES

MIRAMICHI
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1993 GRAVITY CORE ANALYSES

MIRAMICH]
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1893 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 25
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 26
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1893 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 27
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 28
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 29
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1993 GRAVITY CORE ANALYSES

MIRAMICH]

CORE 30
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1993 GRAVITY CORE ANALYSES

MIRAMICH]
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 33
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1993 GRAVITY CORE ANALYSES

MIRAMICHI

CORE 34
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1993 GRAVITY CORE ANALYSES

MIRAMICH!
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APPENDIX D

Colour Photographs of Sediment Cores
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APPENDIX E

Relationship Between Sea Carousel OBS Veoltage and Suspended
Sediment Concentration for Each Sea Carousel Deployment
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APPENDIX F

Operational Log for Lancelot and Excalibur Deployments
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APPENDIX G

Relationship Between Bed Shear Stress, Azimuthal Flow and Excess Stress
With Erosion Rate for Each Sea Carousel Deployment




(All times are ADT)
July 14 Lancelot 1

Water Cal @ 13518 for 10 min., in bot
Water Cal @ 1530 for 5 min.

In Bottom (@ 1337 for days hrs. min.
Pullout (@ 1438 on July 20

Water Cal /@ 1439 for 10 min. on July 20

Station 4 (LANOO1-21)

Water Depth=3.2m

60 scans/min.
45 ¢m bsb.
230 um stone
3/16 in. tip

344

{Deploved at channel margin for ship passage, accidentally set on bottom during st calibration.)

July 15 Excalibur 1 Station 6 (EXC06)
Water Cal @ 1439 for 10 min.

In Bottom @ 1450 for 2 hrs. 39.4 min.
Pullout @ 1705 on July 15

Water Cal @ 1706 for 3 min.

July 15 Excalibur 2 Station 11 (EXC11)
Water Cal @ 1735 for 10 min.

In Bottom (@ 1746 for 21 hrs. 12.0 min.
Pullout (@ 1431 on July 16

Water Cal @ 1432 for 1 min.

Valve opened after 120 min.

Valve closed after 120 + 240 min.

Pi=0m (vacuum-deaired)
July 16 Excalibur 3 Station 7 (EXC07)
Water Cal @ 1710 for 10 min.

In Bottom @ 1721 for 42 hrs. 5.6 min.
Puilout @ 1024 on July 18

Water Cal @ 1024 for 15 min,

(Boat swung over instrument at 2030 hrs.)

July 19 Excalibur 4 Station 13 (EXCI3)
Water Cal @@ 1052 for 10 min,

In Bottom {@ 1103 for 2 hrs. 39.8 min.
Pullout @ 1322 on July 19

Water Cal (@ 1322 for 3 min.

Water Depth=3.5m

120 scans/min.
55 cm bsh,
230 um stone
3/16 in. tip

Water Depth=53.2m

60 scans/min.

353 cm bsb.

250 um stone

3/16 in. tip

36.3cc recovered
21.7 deg. C (on deck)

Water Depth=5.5m

60 scans/min.
55 cm bsb.

35 um stone
3/16 in. tip

Water Depth=8.2m

60 scans/min.
53 cm bsb.
33 um stone
3/16 in, tip

(Accidentally tugged on instrument while dropping anchor weight.)

Do=39m

Do=0m

Do=3%m




July 19 Excalibur 3 Station 12 (EXC12)
Water Cal i@ 1350 for 10 min,

In Bottom i@ 1405 for 2 hrs. 43,1 min.
Pullout @ 1621 on July 19

Water Cal @ 1622 for 5 min.

Water Depth=8.5m

60 scans/min.
33 cm bsb.
35 um stone
3/16 in, tip

{Short chop, 0.5 sec. waves, our boat wake at 1744-1743 hrs.)

July 19 Excalibur 6 Station 8§ (EXCO8)
Water Cal @ 1702 for 5 min.

In Bottom (@ 1709 for 2 hrs. 11.3 min.
Pullout @ 1902 on July 19

Water Cal @ 1902 for 5 min.

(Deploved at same site as Station 06.)

July 19 Excalibur 7 Station 17 (EXC1IT)
Water Cal @ 1952 for 10 min,

In Bottom @ 2004 for 16 hrs. 27.6 min.
Pullout (@ 1202 on July 22

Water Cal @ 1203 for 10 min.

Valve opened after 70 min.

Valve closed after 70+360 min.

Po=0m (vacuum-deaired)

{Deployed near Lancelot 1 at channel margin.)

July 22 Lancelot 2 Station 18 (EXC18)
Water Cal /@ 1009 min. for 5 min.

In Bottom (@ 1016 for days

Pullout (@ 1014 on July 27

Water Cal @ 1015 for 5 min.

Water Depth=>3m

300 scans/min.
55 cm bsb.

35 um stone
3716 in. tip

Water Depth=5.5m

30 scans/min.
35 cm bsb.
35 um stone
3/16 in. tip
40.8 ¢c recovered
22 deg C {on deck)

Water Depth=7.0m

120 scans/min,
45 c¢m bsb.

70 um stone
3/16 1n. tip

{Deploved on control site with new plywood baseplate.)

July 22 Excalibur § Station 20 (EXC20)
Water Cal @ 1112 for 10 min.

In Bottom /@ 1118 for 3 hrs. 47.4 min.
Pullout ) 1441 on July 22

Water Cal @ 1442 for 5 min.

Water Depth=35.3m

60 scans/min.
53 ¢m bsb.
70 um stone
3/16 in. tp

{Deployed on dumpsite, possible leak putting senosrs off-scale.)
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Do=39m

Do=39m

Do=2m

Do=3%m




July 23 Excalibur 9 Station 21 (EXC2D
Water Cal @ 1047 for 10 min.

In Bottom (¢ 1058 for 4 hrs. 5.9 min.

Pullout (@ 1438 on July 23

Water Cal @ 1439 for 5 min.

Water Depth=4.9m

60 scans/min,
55 cm bsb.
70 um stone
3/16 in tip

(On dumpsite, deployed at high tide, previously was 20 ft. of water before dumping.)

July 23 Excalibur 10 Station 23 (EXC23)
Water Cal @ 1503 for 15 min.

In Bottom @ 1520 for 2 hrs, 19.5 min.
Pullout @ 1714 on July 23

Water Cal @ 1714 for 5 min.

(On dumpsite, deployed at low tide.)

July 23 Excalibur 11 Station 24 (EXC24)
Water Cal @ 1731 for 5 min.

In Bottom (@ 1737 for 16 hrs, 47.6 min,
Puliout @ 1002 on July 24

Water Cal @ 1003 for 5 min.

Valve opened after 240 min.

Valve closed after 240+120 min.

July 24 Excalibur 12 Station 25 (EXC25)
Water Cal @ 1221 for 5 min.

In Bottomn @ 1228 for 3 hrs. 42.5 min.
Pullout (@ 1552 on July 24

Water Cal @ 1553 for 3 min,

July 24 Excalibur 13 Station 28 (EXC28)
Water Cal @ 1642 for 5 min,

In Bottom (@ 1650 for 8 hrs. 17.4 min.
Pullout @ 1050 on July 25

Water Cal @ 1050 for 5 min,

July 25 Excalibur 14 Station 29 (EXC29)
Water Cai @ 1132 for 20 min.

In Bottom (@ 1154 for 9 hrs. 8.7 min.

Pullout @ 1614 on July 25

Water Cal @ 1615 for 5 min.

Water Depth=4.3m

120 scans/min.
33 cm bsb.

70 um stone
3/16 1n. tip

Water Depth=53m

60 scans/min,

55 cm bsh.

70 um stone

3/16 in. tip

36.6 cc recovered
22 deg C {on deck)

Water Depth=6.4m

60 scans/min.
55 ¢m bsb.
70 um stone
3/16 in. stone

Water Depth=3.2m

60 scans/min.
53 cm bsb.
70 um stone
3/16 in. tip

Water Depth=5.3m

120 scans/min.
35 c¢m bsb.

70 um stone
3/16 intip
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Do=39m

Do=39m

Do=1m

Do=38m

Do=38m

Do=38m




July 23 Excalibur 15 Station 31 (EXC31D)
Water Cal @ 1641 for 3 min.

In Bottom ‘@ 1646 for hrs. min.

Puilout ¢ 1016 on July 26

Water Cal /@ 1017 for 5 min.

July 26 Excalibur 16 Station 32 (EXC32)
Water Cal @ 1040 for 15 min.

In Bottom /@ 1057 for hrs. min.

Pullout 3 1222 on July 26

Water Cal (@ 1322 for 5 min,

(Brushed bottom during Lst calibration?)

July 26 Excalibur 17 Station 33 (EX(C33)
Water Cal i@ 1238 for 8 min.

In Bottom (@@ 1246 for hrs. min.

Puliout @ 1619 on July 26

Water Cal @ 1619 for 5 min.

Water Depth=35m Do=38m

60 scans/min.
35 cm bsb.
70 um stone
3/16 in. tip

Water Depth=3.5m Do=38m .

60 scans/min.
55 ¢m bsb.
70 um stone
3/16 . tip

Water Depth=4.6m Do=38m

60 scans/min.
35 ¢m bsb.
70 um stone
3/16 in. Hp

{Located on freshly-dumped material about 1m in thickness, based on sounder.)

July 26 Excalibur I8 Station 36 (EXC36)
Water Cal (@ 1649 for 10 min.

In Bottom @ 1700 for hrs, min.

Pullout @ 0943 on July 27

Water Cal @ 0949 for 5 min.

Valve opened after 80 min

Valve closed after 80+180 min.

Po=0m (vacuum-deaired)

(Strong smell of hydrogen disulphide, ship leaving harbour in morning (unloaded), located on channel

margin near Lancelot 1)

Water Depth=3.5m Do=3m

60 scans/min.
33 ¢m bsb.
70 um stone
3/16 in, tip
408 cc recovered
22 deg C (on deck)
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